
G
oogle the newsgroups or Web for
the names of design patterns, and
you’re sure to find that one of the
most commonly mentioned is Sin-

gleton. Try to put Singleton into practice,
however, and you’re all but certain to
bump into a significant limitation: As tra-
ditionally implemented, Singleton isn’t
thread safe. 

Much effort has been put into address-
ing this shortcoming. One of the most
popular approaches is a design pattern in
its own right, the Double-Checked Lock-
ing Pattern (DCLP); see Douglas C.
Schmidt et al., “Double-Checked Locking”
and Douglas C. Schmidt et al., Pattern-

Oriented Software Architecture, Volume
2. DCLP is designed to add efficient thread
safety to initialization of a shared resource
(such as a Singleton), but it has a prob-
lem— it’s not reliable. Furthermore, there’s
virtually no portable way to make it reli-
able in C++ (or in C) without substantively
modifying the conventional pattern im-
plementation. To make matters even more

interesting, DCLP can fail for different rea-
sons on uniprocessor and multiprocessor
architectures. 

In this two-part article, we explain why
Singleton isn’t thread safe, how DCLP at-
tempts to address that problem, why DCLP
may fail on both uni- and multiprocessor
architectures, and why you can’t (portably)
do anything about it. Along the way, we

clarify the relationships among statement
ordering in source code, sequence points,
compiler and hardware optimizations, and
the actual order of statement execution.
Finally, in the next installment, we con-
clude with some suggestions regarding
how to add thread safety to Singleton (and
similar constructs) such that the resulting
code is both reliable and efficient.

The Singleton 
Pattern and Multithreading
The traditional implementation of the
Singleton Pattern (see Erich Gamma et
al., Design Patterns: Elements of Reusable
Object-Oriented Software) is based on
making a pointer point to a new object
the first time the object is requested. In
a single-threaded environment, Example
1 generally works fine, though interrupts
can be problematic. If you are in Sin-
gleton::instance, receive an interrupt, and
invoke Singleton::instance from the han-
dler, you can see how you’d get into
trouble. Interrupts aside, however, this
implementation works fine in a single-
threaded environment.

Unfortunately, this implementation is
not reliable in a multithreaded environ-
ment. Suppose that Thread A enters the
instance function, executes through line
14, and is then suspended. At the point
where it is suspended, it has just deter-
mined that pInstance is null; that is, no
Singleton object has yet been created.

Thread B now enters instance and ex-
ecutes line 14. It sees that pInstance is
null, so it proceeds to line 15 and cre-
ates a Singleton for pInstance to point
to. It then returns pInstance to instance’s
caller.
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Example 1: In single-threaded
environments, this code generally
works okay.

1 // from the header file
2 class Singleton {
3 public:
4 static Singleton* instance();
5    ...
6 private:
7    static Singleton* pInstance;
8 };

9
10 // from the implementation file
11 Singleton* Singleton::pInstance =

0;
12
13 Singleton* Singleton::instance() {
14    if (pInstance == 0) {
15       pInstance = new Singleton;
16    }
17    return pInstance;
18 }



At some point later, Thread A is allowed
to continue running, and the first thing it
does is move to line 15, where it conjures
up another Singleton object and makes pIn-
stance point to it. It should be clear that
this violates the meaning of a Singleton, as
there are now two Singleton objects. 

Technically, line 11 is where pInstance
is initialized, but for practical purposes,
it’s line 15 that makes it point where we
want it to, so for the remainder of this ar-
ticle, we’ll treat line 15 as the point where
pInstance is initialized.

Making the classic Singleton imple-
mentation thread safe is easy. Just acquire
a lock before testing pInstance, as in Ex-
ample 2. The downside to this solution is
that it may be expensive. Each access to
the Singleton requires acquisition of a lock,
but in reality, we need a lock only when
initializing pInstance. That should occur
only the first time instance is called. If in-
stance is called n times during the course
of a program run, we need the lock only
for the first call. Why pay for n lock ac-
quisitions when you know that n–1 of
them are unnecessary? DCLP is designed
to prevent you from having to.

The Double-Checked Locking Pattern
The crux of DCLP is the observation that
most calls to instance see that pInstance
is not null, and not even try to initialize
it. Therefore, DCLP tests pInstance for null-
ness before trying to acquire a lock. Only
if the test succeeds (that is, if pInstance
has not yet been initialized) is the lock ac-
quired. After that, the test is performed
again to ensure pInstance is still null
(hence, the “double-checked” locking).
The second test is necessary because it is
possible that another thread happened to
initialize pInstance between the time pIn-
stance was first tested and the time the
lock was acquired. 

Example 3 is the classic DCLP imple-
mentation (see Douglas C. Schmidt et al.,
“Double-Checked Locking” and Douglas
C. Schmidt et al., Pattern-Oriented Software
Architecture, Volume 2). The papers defin-
ing DCLP discuss some implementation is-
sues (that is, the importance of volatile-
qualifying the Singleton pointer and the
impact of separate caches on multiproces-
sor systems, both of which we address lat-
er; as well as the need to ensure the atom-
icity of certain reads and writes, which we
do not discuss in this article), but they fail
to consider a much more fundamental
problem: Ensuring that the machine in-
structions executed during DCLP are ex-
ecuted in an acceptable order. This is the
fundamental problem we focus on here.

DCLP and Instruction Ordering
Consider again pInstance = new Single-
ton;, the line that initializes pInstance.

This statement causes three things to
happen:

• Step 1. Allocate memory to hold a Sin-
gleton object.

• Step 2. Construct a Singleton object in
the allocated memory.

• Step 3. Make pInstance point to the al-
located memory.

Of critical importance is the observa-
tion that compilers are not constrained to
perform these steps in this order! In par-
ticular, compilers are sometimes allowed
to swap Steps 2 and 3. Why they might
want to do that is a question we’ll address
in a moment. For now, let’s focus on what
happens if they do. 

Consider Example 4, where we’ve ex-
panded pInstance’s initialization line into
the three constituent tasks just mentioned
and where we’ve merged Steps 1 (mem-
ory allocation) and 3 (pInstance assign-
ment) into a single statement that precedes
Step 2 (Singleton construction). The idea
is not that a human would write this code.
Rather, it’s that a compiler might generate
code equivalent to this in response to the
conventional DCLP source code that a hu-
man would write.

In general, this is not a valid translation
of the original DCLP source code because
the Singleton constructor called in Step 2
might throw an exception. And, if an ex-
ception is thrown, it’s important that pIn-
stance has not yet been modified. That’s
why, in general, compilers cannot move
Step 3 above Step 2. However, there are
conditions under which this transforma-
tion is legitimate. Perhaps the simplest
such condition is when a compiler can
prove that the Singleton constructor can-
not throw (via postinlining flow analysis,
for instance), but that is not the only con-

dition. Some constructors that throw can
also have their instructions reordered such
that this problem arises. 

Given the above translation, consider
the following sequence of events:

• Thread A enters instance, performs the
first test of pInstance, acquires the lock,
and executes the statement made up of
Steps 1 and 3. It is then suspended. At
this point, pInstance is not null, but no
Singleton object has yet been construct-
ed in the memory pInstance points to.

• Thread B enters instance, determines
that pInstance is not null, and returns it
to instance’s caller. The caller then deref-
erences the pointer to access the Sin-
gleton that, oops, has not yet been con-
structed. 

DCLP works only if Steps 1 and 2 are
completed before Step 3 is performed, but
there is no way to express this constraint
in C or C++. That’s the dagger in the heart
of DCLP—you need to define a constraint
on relative instruction ordering, but the
languages give you no way to express the
constraint. 

Yes, the C and C++ Standards (see
ISO/IEC 9899:1999 International Standard
and ISO/IEC 14882:1998(E), respectively)
do define sequence points, which define
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Singleton* Singleton::instance() {
if (pInstance == 0) {

Lock lock;
if (pInstance == 0) {

pInstance = // Step 3
operator new(sizeof(Singleton)); // Step 1

new (pInstance) Singleton; // Step 2
}

}
return pInstance;

}

Example 4: pInstance’s initialization line expanded into three constituent tasks.

Singleton* Singleton::instance() {
Lock lock; // acquire lock (params omitted for simplicity)
if (pInstance == 0) {

pInstance = new Singleton;
}
return pInstance;

} // release lock (via Lock destructor)

Example 2: Acquiring a lock before testing pInstance.

Singleton* Singleton::instance() {
if (pInstance == 0) { // 1st test

Lock lock;
if (pInstance == 0) { // 2nd test

pInstance = new Singleton;
}

}
return pInstance;

}

Example 3: The classic DCLP
implementation. 



constraints on the order of evaluation. For
example, paragraph 7 of Section 1.9 of
the C++ Standard encouragingly states: 

At certain specified points in the execution
sequence called sequence points, all side
effects of previous evaluations shall be com-
plete and no side effects of subsequent eval-
uations shall have taken place. 

Furthermore, both Standards state that
a sequence point occurs at the end of each
statement. So it seems that if you’re just
careful with how you sequence your state-
ments, everything falls into place.

Oh, Odysseus, don’t let thyself be lured
by sirens’ voices; for much trouble is wait-
ing for thou and thy mates! 

Both Standards define correct program
behavior in terms of the “observable be-
havior” of an abstract machine. But not
everything about this machine is observ-
able. For example, consider function Foo
in Example 5 (which looks silly, but might
plausibly be the result of inlining some
other functions called by Foo).

In both C and C++, the Standards guar-
antee that Foo prints “5,_10”. But that’s
about the extent of what we’re guaran-
teed. We don’t know whether statements
1–3 will be executed at all and, in fact,
a good optimizer will get rid of them. If
statements 1–3 are executed, we know
that statement 1 precedes statements 2– 4
and — assuming that the call to printf
isn’t inlined and the result further opti-
mized—we know about the relative or-
dering of statements 2 and 3. Compilers
might choose to execute statement 2 first,
statement 3 first, or even to execute them
both in parallel, assuming the hardware
has some way to do it. Which it might
well have. Modern processors have a
large word size and several execution
units. Two or more arithmetic units are
common. (For example, the Pentium 4
has three integer ALUs, PowerPC’s G4e

has four, and Itanium has six.) Their ma-
chine language allows compilers to gen-
erate code that yields parallel execution
of two or more instructions in a single
clock cycle. 

Optimizing compilers carefully analyze
and reorder your code so as to execute
as many things at once as possible (with-
in the constraints on observable behav-
ior). Discovering and exploiting such par-
allelism in regular serial code is the single
most important reason for rearranging
code and introducing out-of-order exe-
cution. But it’s not the only reason. Com-
pilers (and linkers) might also reorder in-
structions to avoid spilling data from a
register, to keep the instruction pipeline
full, to perform common subexpression
elimination, and reduce the size of the
generated executable (see Bruno De Bus
et al., “Post-pass Compaction Tech-
niques”).

When performing these kinds of opti-
mizations, C/C++ compilers and linkers
are constrained only by the dictates of
observable behavior on the abstract ma-
chines defined by the language standards,
and— this is the important bit— those
abstract machines are implicitly single
threaded. As languages, neither C nor C++
have threads, so compilers don’t have to
worry about breaking threaded programs
when they are optimizing. It should,
therefore, not surprise you that they some-
times do.

That being the case, how can you write
C and C++ multithreaded programs that ac-
tually work? By using system-specific li-
braries defined for that purpose. Libraries
such as POSIX threads (pthreads) (see
ANSI/IEEE 1003.1c-1995) give precise spec-
ifications for the execution semantics of var-
ious synchronization primitives. These li-
braries impose restrictions on the code that
library-conformant compilers are permitted
to generate, thus forcing such compilers to
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void Foo() {
int x = 0, y = 0; // Statement 1
x = 5; // Statement 2
y = 10; // Statement 3
printf("%d,_%d", x, y); // Statement 4

}

Example 5: This code could be the result of inlining some other functions called
by Foo.

Singleton* Singleton::instance() {
if (pInstance == 0) {

Lock lock;
if (pInstance == 0) {

Singleton* temp = new Singleton; // initialize to temp
pInstance = temp; // assign temp to pInstance

}
}
return pInstance;

}

Example 6: Using a temporary variable.

http://www.dtsearch.com


emit code that respects the execution or-
dering constraints on which those libraries
depend. That’s why threading packages
have parts written in assembler or issue sys-
tem calls that are themselves written in as-
sembler (or in some unportable language):
You have to go outside Standard C and C++
to express the ordering constraints that mul-
tithreaded programs require. DCLP tries to
get by using only language constructs. That’s
why DCLP isn’t reliable.

As a rule, programmers don’t like to be
pushed around by their compilers. Per-
haps you are such a programmer. If so,
you may be tempted to try to outsmart
your compiler by adjusting your source
code so that pInstance remains unchanged
until after Singleton’s construction is com-
plete. For example, you might try insert-
ing use of a temporary variable, as in Ex-
ample 6. In essence, you’ve just fired the
opening salvo in a war of optimization.
Your compiler wants to optimize. You
don’t want it to, at least not here. But this
is not a battle you want to get into. Your
foe is wiley and sophisticated, imbued
with strategems dreamed up over decades
by people who do nothing but think about
this kind of thing all day long, day after
day, year after year. Unless you write op-
timizing compilers yourself, they are way
ahead of you. In this case, for example,
it would be a simple matter for the com-
piler to apply dependence analysis to de-
termine that temp is an unnecessary vari-
able, hence, to eliminate it, thus treating
your carefully crafted “unoptimizable”
code if it had been written in the tradi-
tional DCLP manner. Game over. You lose.

If you reach for bigger ammo and try
moving temp to a larger scope (say, by
making it file static), the compiler can still
perform the same analysis and come to
the same conclusion. Scope, schmope.
Game over. You lose. So you call for back-
up. You declare temp extern and define it
in a separate translation unit, thus pre-
venting your compiler from seeing what
you are doing. Alas, some compilers have
the optimizing equivalent of night-vision
goggles: They perform interprocedural
analysis, discover your ruse with temp,
and again optimize it out of existence. Re-
member, these are optimizing compilers.
They’re supposed to track down unnec-
essary code and eliminate it. Game over.
You lose.

So you try to disable inlining by defin-
ing a helper function in a different file,
thus forcing the compiler to assume that
the constructor might throw an exception
and, therefore, delay the assignment to
pInstance. Nice try, but some build envi-
ronments perform link-time inlining fol-
lowed by more code optimizations (see
Bruno De Bus et al., “Post-pass Com-
paction Techniques;” Robert Cohn et al.,

“Spike: An Optimizer for Alpha/NT Exe-
cutables;” and Matt Pietrek, “Link-Time
Code Generation”). Game over. You lose.

Nothing you do can alter the funda-
mental problem: You need to be able to
specify a constraint on instruction order-
ing, and your language gives you no way
to do it.

Next Month
In the next installment of this two-part ar-
ticle, we’ll examine the role of the volatile
keyword, see what impact DCLP has on
multiprocessor machines, and conclude
with a few suggestions.
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I
n the first installment of this two-part
article, we examined why the Single-
ton pattern isn’t thread safe, and how
the Double-Checked Locking Pattern

addresses that problem. This month, we
look at the role the volatile keyword plays
in this, and why DCLP may fail on both
uni- and multiprocessor architectures.

The desire for specific instruction or-
dering makes you wonder whether the
volatile keyword might be of help with
multithreading in general and with DCLP
in particular. Consequently, we restrict our
attention to the semantics of volatile in
C++ and further restrict our discussion to
its impact on DCLP. 

Section 1.9 of the C++ Standard (see
ISO/IEC 14882:1998(E)) includes this in-
formation (emphasis is ours):

The observable behavior of the [C++] ab-
stract machine is its sequence of reads and
writes to volatile data and calls to library
I/O functions.

Accessing an object designated by a
volatile lvalue, modifying an object, calling
a library I/O function, or calling a function
that does any of those operations are all
side effects, which are changes in the state
of the execution environment.

In conjunction with our earlier observa-
tions that the Standard guarantees that all
side effects will have taken place when se-
quence points are reached and that a se-
quence point occurs at the end of each C++
statement, it would seem that all we need
to do to ensure correct instruction order is
to volatile-qualify the appropriate data and
sequence our statements carefully. Our ear-
lier analysis shows that pInstance needs to
be declared volatile, and this point is made
in the papers on DCLP (see Douglas C.
Schmidt et al., “Double-Checked Locking”
and Douglas C. Schmidt et al., Pattern-
Oriented Software Architecture, Volume 2).
However, Sherlock Holmes would certain-
ly notice that, to ensure correct instruction
order, the Singleton object itself must also
be volatile. This is not noted in the original
DCLP papers and that’s an important over-
sight. To appreciate how declaring pIn-
stance alone volatile is insufficient, consid-
er Example 7 (Examples 1–6 appeared in
Part I of this article; see DDJ, July 2004). 

After inlining the constructor, the code
looks like Example 8. Though temp is
volatile, *temp is not, and that means that
temp->x isn’t, either. Because you now un-
derstand that assignments to nonvolatile

data may sometimes be reordered, it is
easy to see that compilers could reorder
temp->x’s assignment with regard to the
assignment to pInstance. If they did, pIn-
stance would be assigned before the data
it pointed to had been initialized, leading
again to the possibility that a different
thread would read an uninitialized x.

An appealing treatment for this disease
would be to volatile-qualify *pInstance
as well as pInstance itself, yielding a glo-
rified version of Singleton where all pawns
are painted volatile; see Example 9.

At this point, you might reasonably
wonder why Lock isn’t also declared
volatile. After all, it’s critical that the lock
be initialized before you try to write to
pInstance or temp. Well, Lock comes from
a threading library, so you can assume it
either dictates enough restrictions in its
specification or embeds enough magic in
its implementation to work without need-
ing volatile. This is the case with all thread-
ing libraries that we know of. In essence,
use of entities (objects, functions, and the
like) from threading libraries leads to the
imposition of “hard sequence points” in
a program— sequence points that apply
to all threads. For purposes of this article,
we assume that such hard sequence points
act as firm barriers to instruction reorder-
ing during code optimization: Instructions
corresponding to source statements pre-
ceding use of the library entity in the
source code may not be moved after the
instructions corresponding to use of the
entity, and instructions corresponding to
source statements following use of such
entities in the source code may not be
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moved before the instructions corre-
sponding to their use. Real threading li-
braries impose less draconian restrictions,
but the details are not important for pur-
poses of our discussion here.

You might hope that the aforemen-
tioned fully volatile-qualified code would
be guaranteed by the Standard to work
correctly in a multithreaded environment,
but it may fail for two reasons.

First, the Standard’s constraints on ob-
servable behavior are only for an abstract
machine defined by the Standard, and that

abstract machine has no notion of multi-
ple threads of execution. As a result,
though the Standard prevents compilers
from reordering reads and writes to
volatile data within a thread, it imposes
no constraints at all on such reorderings
across threads. At least that’s how most
compiler implementers interpret things. As
a result, in practice, many compilers may
generate thread-unsafe code from the afore-
mentioned source. If your multithreaded
code works properly with volatile and
doesn’t work without it, then either your
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if (pInstance == 0) {
Lock lock;
if (pInstance == 0) {

Singleton* volatile temp =
static_cast<Singleton*>(operator new(sizeof(Singleton)));

temp->x = 5; // inlined Singleton constructor
pInstance = temp;

}
}

Example 8: Inlining the constructor in Example 7.

class Singleton {
public:
static Singleton* instance();

...
private:

static Singleton* volatile pInstance; // volatile added
int x;
Singleton() : x(5) {}

};
// from the implementation file
Singleton* Singleton::pInstance = 0;
Singleton* Singleton::instance() {
if (pInstance == 0) {

Lock lock;
if (pInstance == 0) {

Singleton*volatile temp = new Singleton; // volatile added
pInstance = temp;

}
}
return pInstance;
}

Example 7: Declaring pInstance.

class Singleton {
public:
static volatile Singleton* volatile instance();

...
private:

// one more volatile added
static volatile Singleton* volatile pInstance;

};
// from the implementation file
volatile Singleton* volatile Singleton::pInstance = 0;
volatile Singleton* volatile Singleton::instance() {

if (pInstance == 0) {
Lock lock;
if (pInstance == 0) {

// one more volatile added
volatile Singleton* volatile temp =

new volatile Singleton;
pInstance = temp;

}
}
return pInstance;

}

Example 9: A glorified version of Singleton.

http://www.scitools.com


C++ implementation carefully implement-
ed volatile to work with threads (less like-
ly) or you simply got lucky (more likely).
Either case, your code is not portable.

Second, just as const-qualified objects
don’t become const until their construc-
tors have run to completion, volatile-
qualified objects become volatile only
upon exit from their constructors. In the
statement:

volatile Singleton* volatile temp = 
new volatile Singleton;

the object being created doesn’t become
volatile until the expression:

new volatile Singleton;

has run to completion, and that means
that we’re back in a situation where in-
structions for memory allocation and ob-
ject initialization may be arbitrarily re-
ordered.

This problem is one we can address,
albeit awkwardly. Within the Singleton
constructor, we use casts to temporarily
add “volatileness” to each data member
of the Singleton object as it is initialized,
thus preventing relative movement of
the instructions performing the initial-
izations. Example 10 is the Singleton
constructor written in this way. (To sim-
plify the presentation, we’ve used an as-
signment to give Singleton::x its first val-
ue instead of a member initialization list,
as in Example 10. This change has no
effect on any of the issues we’re ad-
dressing here.)

After inlining this function in the ver-
sion of Singleton where pInstance is prop-
erly volatile qualified, we get Example 11.
Now the assignment to x must precede
the assignment to pInstance, because both
are volatile.

Unfortunately, all this does nothing to
address the first problem— C++’s abstract
machine is single threaded, and C++ com-
pilers may choose to generate thread-
unsafe code from source like that just
mentioned, anyway. Otherwise, lost op-
timization opportunities lead to too big
an efficiency hit. After all this, we’re back
to square one. But wait, there’s more—
more processors.

DCLP on Multiprocessor Machines
Suppose you’re on a machine with multi-
ple processors, each of which has its own
memory cache, but all of which share a
common memory space. Such an architec-
ture needs to define exactly how and when
writes performed by one processor propa-
gate to the shared memory and thus be-
come visible to other processors. It is easy
to imagine situations where one processor
has updated the value of a shared variable
in its own cache, but the updated value has
not yet been flushed to main memory, much

less loaded into the other processors’ caches.
Such inter-cache inconsistencies in the val-
ue of a shared variable is known as the
“cache coherency problem.” 

Suppose processor A modifies the mem-
ory for shared variable x and then later
modifies the memory for shared variable
y. These new values must be flushed to
the main memory so that other proces-
sors see them. However, it can be more
efficient to flush new cache values in in-
creasing address order, so if y’s address
precedes x’s, it is possible that y’s new
value will be written to main memory be-
fore x’s is. If that happens, other proces-
sors may see y’s value change before x’s.

Such a possibility is a serious problem
for DCLP. Correct Singleton initialization
requires that the Singleton be initialized
and that pInstance be updated to be non-
null and that these operations be seen
to occur in this order. If a thread on pro-
cessor A performs step 1 and then step 2,
but a thread on processor B sees step 2
as having been performed before step 1,
the thread on processor B may again re-
fer to an uninitialized Singleton.

The general solution to cache coheren-
cy problems is to use memory barriers: in-
structions recognized by compilers, linkers,
and other optimizing entities that constrain
the kinds of reorderings that may be per-
formed on read/writes of shared memory
in multiprocessor systems. In the case of
DCLP, we need to use memory barriers to
ensure that pInstance isn’t seen to be non-
null until writes to the Singleton have been
completed. Example 12 is pseudocode that
closely follows an example presented by
David Bacon et al. (see the “Double-
Checked Locking Pattern is Broken”). We

show only placeholders for the statements
that insert memory barriers because the ac-
tual code is platform specific (typically in
assembler).

This is overkill, as Arch Robison points
out (in personal communication): 

Technically, you don’t need full bidirec-
tional barriers. The first barrier must pre-
vent downwards migration of Singleton’s
construction (by another thread); the sec-
ond barrier must prevent upwards migra-
tion of pInstance’s initialization. These are
called “acquire” and “release” operations,
and may yield better performance than full
barriers on hardware (such as Itainum) that
makes the distinction.

Still, this is an approach to implement-
ing DCLP that should be reliable, provid-
ed you’re running on a machine that sup-
ports memory barriers. All machines that
can reorder writes to shared memory sup-
port memory barriers in one form or an-
other. Interestingly, this same approach
works just as well in a uniprocessor set-
ting. This is because memory barriers also
act as hard sequence points that prevent
the kinds of instruction reorderings that
can be so troublesome.

Conclusion
There are several lessons to be learned
here. First, remember that timeslice-based
parallelism on uniprocessors is not the
same as true parallelism across multiple
processors. That’s why a thread-safe so-
lution for a particular compiler on a
uniprocessor architecture may not be
thread safe on a multiprocessor architec-
ture, not even if you stick with the same
compiler. (This is a general observation—
it’s not specific to DCLP.)
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Singleton()
{

static_cast<volatile int&>(x) = 5; // note cast to volatile
}

Example 10: Using casts to create the Singleton constructor.

class Singleton {
public:

static Singleton* instance();  
...

private:
static Singleton* volatile pInstance;
int x;
...

};
Singleton* Singleton::instance()
{

if (pInstance == 0) {
Lock lock;
if (pInstance == 0) {

Singleton* volatile temp =
static_cast<Singleton*>(operator new(sizeof(Singleton)));

static_cast<volatile int&>(temp->x) = 5;
pInstance = temp;

}
}

}

Example 11: Inlining a function in Singleton.



Second, although DCLP isn’t intrinsi-
cally tied to Singleton, the use of Sin-
gleton tends to lead to a desire to “op-

timize” thread-safe access via DCLP. You
should therefore be sure to avoid im-
plementing Singleton with DCLP. If you

(or your clients) are concerned about the
cost of locking a synchronization object
every time instance is called, you can ad-
vise clients to minimize such calls by
caching the pointer that instance returns.
For example, suggest that instead of writ-
ing code like Example 13(a), clients do
things like Example 13(b). Before mak-
ing such a recommendation, it’s general-
ly a good idea to verify that this really
leads to a significant performance gain.
Use a lock from a threading library to en-
sure thread-safe Singleton initialization,
then do timing studies to see if the cost
is truly something worth worrying about.

Third, avoid using a lazily initialized Sin-
gleton unless you really need it. The clas-
sic Singleton implementation is based on
not initializing a resource until that resource
is requested. An alternative is to use ea-
ger initialization; that is, to initialize a re-
source at the beginning of the program
run. Because multithreaded programs typ-
ically start running as a single thread, this
approach can push some object initializa-
tions into the single-threaded startup por-
tion of the code, thus eliminating the need
to worry about threading during the ini-
tialization. In many cases, initializing a Sin-
gleton resource during single-threaded pro-
gram startup (that is, prior to executing
main) is the simplest way to offer fast,
thread-safe Singleton access.

A different way to employ eager ini-
tialization is to replace the Singleton Pat-
tern with the Monostate Pattern (see
Steve Ball et al., “Monostate Classes: The
Power of One”). Monostate, however,
has different problems, especially when
it comes to controlling the order of ini-
tialization of the nonlocal static objects
that make up its state. Effective C++ (see
“References”) describes these problems
and, ironically, suggests using a variant
of Singleton to escape them. (The vari-
ant is not guaranteed to be thread safe;
see Pattern Hatching: Design Patterns
Applied by John Vlissides.)
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Singleton* Singleton::instance () {
Singleton* tmp = pInstance;
... // insert memory barrier
if (tmp == 0) {

Lock lock;
tmp = pInstance;
if (tmp == 0) {

tmp = new Singleton;
... // insert memory barrier
pInstance = tmp;

}
}
return tmp;

}

Example 12: Pseudocode that follows
an example presented by David
Bacon.

(a)
Singleton::instance()->transmogrify();
Singleton::instance()->metamorphose();
Singleton::instance()->transmute();

(b)
Singleton* const instance =
Singleton::instance(); // cache instance pointer
instance->transmogrify();
instance->metamorphose();
instance->transmute();

Example 13: Instead of writing code like (a), clients should use something like (b).

http://www.ddj.com/cdrom/


Another possibility is to replace a glob-
al Singleton with one Singleton per thread,
then use thread-local storage for Singleton
data. This allows for lazy initialization with-
out worrying about threading issues, but it
also means that there may be more than
one “Singleton” in a multithreaded program. 

Finally, DCLP and its problems in C++
and C exemplify the inherent difficulty
in writing thread-safe code in a language
with no notion of threading (or any oth-
er form of concurrency). Multithreading
considerations are pervasive because
they affect the very core of code gener-
ation. As Peter Buhr pointed out in “Are
Safe Concurrency Libraries Possible?” (see

“References”), the desire to keep multi-
threading out of the language and
tucked away in libraries is a chimera.
Do that, and either the libraries will end
up putting constraints on the way com-
pilers generate code (as Pthreads al-
ready does), or compilers and other
code-generation tools will be prohibit-
ed from performing useful optimiza-
tions, even on single- threaded code.
You can pick only two of the troika
formed by multithreading, a thread-
unaware language, and optimized code
generation. Java and the .NET CLI, for
example, address the tension by intro-
ducing thread awareness into the lan-

guage and language infrastructure, re-
spectively (see Doug Lea’s Concurrent
Programming in Java and Arch D. Ro-
bison’s “Memory Consistency & .NET”).
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T
o find the roots of volatile, let’s go
back to the 1970s, when Gordon Bell
(of PDP-11 fame) introduced the
concept of memory-mapped I/O

(MMIO). Before that, processors allocat-
ed pins and defined special instructions
for performing port I/O. The idea behind
MMIO is to use the same pins and in-
structions for both memory and port ac-
cess. Hardware outside the processor in-
tercepts specific memory addresses and
transforms them into I/O requests; so deal-
ing with ports became simply reading
from and writing to machine-specific
memory addresses.

What a great idea. Reducing pin count
is good — pins slow down signal, in-
crease defect rate, and complicate pack-
aging. Also, MMIO doesn’t require spe-
cial instructions for ports. Programs just
use the memory, and the hardware takes
care of the rest.

Or almost.
To see why MMIO needs volatile vari-

ables, consider the following code:

unsigned int *p = GetMagicAddress();
unsigned int a, b;
a = *p;
b = *p;

If p refers to a port, a and b should re-
ceive two consecutive words read from
that port. However, if p points to a bona
fide memory location, then a and b load
the same location twice and, hence, will
compare equal. Compilers exploit this
assumption in the copy propagation op-
timization that transforms b=*p; into the
more efficient b = a;. Similarly, for the
same p, a, and b, consider:

*p = a;
*p = b;

The code writes two words to *p, but
the optimizer might assume that *p is

memory and perform the dead assign-
ment elimination optimization by elim-
inating the first assignment.

So, when dealing with ports, some
optimizations must be suspended.
volatile exists for specifying special treat-
ment for ports, specifically: The content
of a volatile variable is unstable (can
change by means unknown to the com-
piler); all writes to volatile data are ob-
servable, so they must be executed re-
ligiously; and all operations on volatile
data are executed in the sequence in
which they appear in the source code.
The first two rules ensure proper read-
ing and writing. The last one allows im-
plementation of I/O protocols that mix
input and output. 

This is informally what C and C++’s
volatile guarantees. Java took volatile a
step further by guaranteeing the afore-
mentioned properties across multiple
threads. This was an important step, but
it wasn’t enough to make volatile usable
for thread synchronization: The relative
ordering of volatile and nonvolatile op-
erations remained unspecified. This
omission forces many variables to be
volatile to ensure proper ordering.

Java 1.5’s volatile has the more re-
strictive, but simpler, acquire/release se-
mantics: Any read of a volatile is guar-
anteed to occur prior to any memory
reference (volatile or not) in the state-
ments that follow, and any write to a
volatile is guaranteed to occur after all
memory references in the statements
preceding it. .NET defines volatile to in-
corporate multithreaded semantics as
well, which are similar to the currently
proposed Java semantics. We know of
no similar work being done on C’s or
C++’s volatile.

— S.M. and A.A.

volatile: A Brief History
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