
Generic〈Programming〉

Smart Pointers Reloaded (III): Constructor Tracking

Andrei Alexandrescu David B. Held

February 19, 2006

Hey, here’s the motivator of the day: “Being really
good at C++ is like being really good at using rocks
to sharpen sticks”—found this on the Net, and I’ll
quote it unattributed to protect the innocent (duh,
as if you haven’t heard of Google). But fear not: psy-
chologists say that the best compliments start with a
negative, and end up with a positive such as “. . . but
we’re in the Stone Age of computing anyway.” And
then you think, hey, he said “really really good.”

Hope the paragraph above is going to make CUJ’s
editorial cut, and that it didn’t lower your morale in
the least, because now we’re going to teach how to
use this silex to. . . pardon, we’ll talk about dealing
with exceptions that occur during object initializa-
tion. More precisely, we’ll show and tell the fasci-
nating saga of smart_ptr initialization, a story that
has important teachings for any generic design—and
policy-based classes in particular. But first, it’s time
to do something we should have done two months
ago.

1 Delayed Acknowledgment

Coauthoring is fun when there’s chemistry, but it
has suprising drawbacks. One, for example, is that
the coauthors tend to leave certain obvious tasks to
one another, to the extent that those tasks never get
done. Mind you, neglect happens when you write
alone as well, but at least you feel more stressed when
you’re alone. Really, coauthorship can bring some
sense of false security with it—just like programming
with exceptions sometimes does.

This is exactly what happened with our last col-
umn. Before submitting it, Dave Held and I had
sent the article out for review to Dave Abrahams, the
one whose name the C++ community fondly put in
“the Abrahams exception safety guarantees” [1, 4].
Through a long and very substantive email ex-
change, Dave Abrahams made many great points and
prompted us to change our draft in many meaningful
ways. What then happened is that Dave Held and
I both left to each other the job of acknowledging
in writing Dave Abrahams’ contribution. That’s not
cool; I’ve been there, and I’ve also seen Dave Abra-
hams not being properly acknowledged in the past by
other work that derived from his.

So we do the best we now can—thank you Dave
for your contribution to our last column and this one,
and please accept our apologies.

2 The Timeless Art of Initial-
ization

RAII (Resource Acquisition Is Initialization) is a
great concept with a bad acronym (how do you pro-
nounce it, “are-ay-eye-eye” or the equally awkward
“are-ay-double-eye”?) and is all about those objects
that nicely grab some resource in their constructor
and free it in their destructor. Then, dealing with re-
source management reduces to scoping those objects
properly.

In Smart Pointers Reloaded (I) [2], we mentioned
an exception safety bug in smart_ptr, and that Dave
fixed it with helpful criticism from the Boost commu-

1



nity (and especially, again, David Abrahams). Just
like the size optimization, what started out as an in-
nocuous discussion turned into a significant modifi-
cation of smart_ptr’s implementation.

The original smart_ptr took the traditional route
of only freeing the resource when the ownership pol-
icy deemed it was ok. However, in the default
reference-counted configuration, if the the reference-
counted constructor threw an exception, the passed-
in resource would be leaked.

Listing 1 shows the original Loki code. As
you can see, if ref_counted::ref_counted()
throws, smart_ptr(stored_type p) leaks p, be-
cause ~smart_ptr() is never called. (By definition,
an object’s destructor is only called if it has been
fully constructed.) Curiously enough, the RAII id-
iom fails to ensure the exception safety for which it is
typically known. However, the failure is not in RAII
itself, but... really, where is the problem? Whose
constructor is it anyway? On the face of it, hey, you
just carefully write smart_ptr’s constructor to face
exceptions properly, isn’t it?

It turns out you can’t no matter what you do,
which is a most puzzling realization. Yes, we have
try, we have catch, but we simply cannot detect and
properly handle exceptions in constructors. Let’s use
a very simple example to illustrate this point—a class
A containing two Bs:

class A {
B b1_;
B b2_;

public:
A()
try // this is a constructor try block

: b1_("hello"), b2_("world")
{
... constructor body ...

}
catch (...) {
// and this is its associated catch

...
}

};

A’s constructor uses the less-known constructor try
block feature that allows catching whatever excep-

tion b1_ or b2_’s constructors might throw. This is
as much trying as we can do; we could honestly say
that we’ve thrown everything we have at the prob-
lem. Yet we haven’t solved it: inside the catch block,
our code can’t tell which of b1_ and b2_ failed to ini-
tialize! There’s no reason to disallow such detection;
the means are simply missing.

If you were thinking you really can do what you
want in C++, it’s about time to disabuse yourself of
that illusion. If, in addition, you are the philosopher
type, you might speculate that the odd constructor
syntax and semantics came up and froze before ex-
ceptions turned out to be so darn important. Con-
tinuing on the musing route, one possible fix close to
the current syntax would be to allow each member
initializer to have its own try-block:

// Warning: this is NOT C++

class A {
B b1_;
B b2_;

public:
A()
: try b1_("hello")
catch (...) { ... b1_ failed ... }

, try b2_("world")
catch (...) { ... b2_ failed ... }

{
... constructor body ...
// only executes if none failed

}
};

Of course, the best is to design the construc-
tor syntax and semantics taking exceptions into ac-
count from the get-go. To conclude said musings,
it is a mild disappointment to see that the recently-
added constructor try block, after passing through
the whole Scylla and Charybdis of standardization,
doesn’t properly solve what it was supposed to.

A fix within the current language would be to add
a new member and to use a constructor of B that
takes an argument, something like this:

class A {
int tracker_;
B b1_;

2



Listing 1: The original ref_counted constructor

ref_counted::ref_counted() {
pCount_ = static_cast<unsigned int*>(
SmallObject<>::operator new(sizeof(unsigned int)));

assert(pCount_);
*pCount_ = 1;

}

bool ref_counted::release(const P&) {
if (!--*pCount_) {
SmallObject<>::operator delete(pCount_, sizeof(unsigned int));
return true;

}
return false;

}

class smart_ptr
: public storage_policy<T>
, public ownership_policy<typename storage_policy<T>::PointerType>
, public checking_policy<typename storage_policy<T>::stored_type>
, public conversion_policy

{ ... };

smart_ptr::smart_ptr(const stored_type& p) : SP(p)
{ KP::OnInit(GetImpl(*this)); }

smart_ptr::~smart_ptr() {
if (OP::release(GetImpl(*static_cast<SP*>(this)))) {
SP::Destroy();

}
}

3



B b2_;
public:
A()
try
: tracker_(0)
, b1_((tracker_ = 1, "hello"))
, b2_((tracker_ = 2, "world"))
{
assert(tracker_ == 2);
... constructor body ...

}
catch (...) {
if (tracker_ == 0) {
... none initialized ...

} else {
... only b1_ initialized ...

}
}

};

The extra set of parentheses in the initialization
of b1_ and b2_ forces the operator semantics for the
comma (so that the compiler doesn’t think you pass
two arguments to B::B). What exposes this hack
is (1) if you want to call a parameterless construc-
tor for B, you’re out in the cold; (2) you need to
use a nonstatic member for what’s essentially a stack
variable used only during construction; (3) you have
the fragile requirement that tracker_ appears before
any other member in A’s definition. You can continue
hacking away at it by making tracker_ static, but
all of a sudden you now have multithreading-related
problems. tracker_ belongs to the stack, and there’s
no way to put it there.

Or there is. Consider this:

class A {
B b1_;
B b2_;

public:
A(int tracker = 0)
try
: b1_((tracker = 1, "hello"))
, b2_((tracker = 2, "world"))
{
assert(tracker == 2);
... constructor body ...

}
catch (...) {
if (tracker == 0) {
... none initialized ...

} else {
... only b1_ initialized ...

}
}

};

Heh, so now the tracker fella is indeed on the
stack, in the form of an additional parameter of A’s
constructor. That extra parameter doesn’t bother
clients much, because it has a default value. But
client code that wrongly initializes tracker still com-
piles and runs, to everyone’s confusion:

A a(3); // oopsies

Overloading of different constructors would only
make things worse. But, as the guy with a chance in
a million said, there is hope. Let’s make counter of
a private type:

class A {
B b1_;
B b2_;
enum tracker type = { NONE, ONE, TWO };

public:
A(tracker type tracker = NONE)
try
: b1_((tracker = 1, "hello"))
, b2_((tracker = 2, "world"))
{
assert(tracker == 2);
... constructor body ...

}
catch (...) {
if (tracker == 0) {
... none initialized ...

} else {
... only b1_ initialized ...

}
}

};

Now client code, no matter what it tries, can’t ex-
plicitly pass a tracker to A’s constructor. We effec-

4



tively made tracker a stack variable that just hap-
pens to sit in A::A’s parameter list for the quirky
reasons mentioned above.

The only disadvantage of this “construction
tracker” idiom remains that it can’t cope with pa-
rameterless constructors. The code that updates
tracker must “parasyte” some argument passed to
each member variable of interest.

3 The resource_manager class

The same problem can be solved another way by go-
ing the RAII route, without any try in sight, and
actually that’s how in fact how currently smart_ptr
tracks its own construction. We move the resource
tracking logic to the individual policies. We do so
by letting storage_policy always free the passed-in
resource, unless someone “higher up” tells it not to
(because of ref-counting or some other strategy). The
bits of code relevant to this new strategy are shown
below.

scalar_storage::~scalar_storage()
{ boost::checked_delete(pointee_); }

void scalar_storage::release()
{ pointee_ = 0; }

ref_counted::~ref_counted()
{ delete count_; }

void ref_counted::reset(ref_counted& sp) {
if (sp.count_) {
--*sp.count_;
sp.count_ = 0;

}
}

Now smart_ptr never leaks resources. In fact,
it’s so frenetic about not leaking, that it fell into
the other extreme: it deletes too often. Most of
the time it is the ownership policy that decides
whether deletion takes place. To prevent that and
take control of deletion, what we want is to call
scalar_storage::release() during smart_ptr’s
destruction, which causes ~scalar_storage() to

delete the null pointer instead. So instead of steal-
ing candy from a baby, you have the baby give the
candy to another baby, and you take the candy from
the second baby on your way out; while doing that,
you leave the second baby with just a candy wrap-
per (the null pointer). The advantage is that should
any quarrel arise between the two babies in the first
stage, you don’t get your hands sticky—and the ba-
bies won’t leak.

Let’s recap the logic. We need to do this during
initialization:

1. Storage gets created before ownership, because
otherwise we’d have to handle the awkward-
ness of an ownership policy that owns nothing.
(We’ve tried that and boy it wasn’t cool.)

2. If the storage policy is successfully created but
the ownership policy is not (throws), the storage
policy must destroy the resource because there’s
no ownership policy to take care of it.

3. As soon as the ownership policy is successfully
created, it takes, well, ownerhsip of the resource.
The storage policy must destroy the resource
only if the ownership policy agrees with that.

Ok, where do we implement that sleight of hand?
It’s really simple: the lifetimes of the storage pol-
icy and the ownership policy are interdependent, and
as such we aggregate them (and only them) into
an object with its own destructor. That object is
resource_manager.

The resource_manager class is the liant that con-
nects the storage policy and ownership policy during
destruction. True, it would be awkward to create a
whole new class just to provide one function. How-
ever, you might recall from the first article in this se-
ries that we added a mechanism to only inherit from
non-empty base classes, thus avoiding size bloat due
to multiple inheritance. The structure of this mecha-
nism makes it easy and elegant to replace one of the
classes with our resource manager, like in Listing 2.

Note that resource_manager’s destructor is
just the original smart_ptr destructor moved to a
position where it can be effective. Also note that the
logic has been reversed because of the babies and

5



Listing 2: The resource_manager class in action

template <class storage_policy, class ownership_policy>
class resource_manager
: public optimally_inherit<storage_policy, ownership_policy>::type

{
...
~resource_manager() {
if (!ownership_policy::release(get_impl(*this))) {
storage_policy::release();

}
}

};

template <
typename T,
template <typename> class ownership_policy = ref_counted,
template <typename> class conversion_policy = disallow_conversion,
template <typename> class checking_policy = assert_check,
template <typename> class storage_policy = scalar_storage

>
class smart_ptr
: public optimally_inherit<
resource_manager<
storage_policy<T>,
ownership_policy<T>

>,
optimally_inherit<
checking_policy<T>,
conversion_policy<T>

>
>

{
...

};

6



the candy. The original smart_ptr::~smart_ptr()
was saying: “If ownership_policy says it’s ok to
free the resource, have storage_policy do so.” But
resource_manager::~resource_manager() says:
“If ownership_policy will not let go of the resource,
tell storage_policy to let go of its reference to the
resource.”

Things turned out quite nicely, but remember this:
smart_ptr may be smart, but it’s only as smart as
its policies. When you define your own storage and
ownership policies, follow these guidelines, which we
believe are entirely reasonable:

• The storage policy must always dispose of its
held resource in the manager.

• The storage policy must implement release()
in such a way that it renders the destructor a no-
op (a good example of a combo is a release()
that assigns NULL to the stored pointer, and a
destructor that deletes the pointer (delete is
a do-nothing on null pointers).

• The ownership policy, once successfully con-
structed, must be able to properly decide on the
lifetime of the owned resource. There’s no such
thing as a nonfunctioning ownership.

• The ownership policy manages its own private
resources (e.g. counter).

And you know what the nicest part is? Orthogo-
nality. Each of the two policies takes care of its own
exception safety; there’s no correlation you need to
maintain between the exception safety of the storage
policy, and that of the ownership policy.

4 Exception Algorithm in Ac-
tion

In the last episode, we introduced an informal algo-
rithm for computing the exception safety of a func-
tion. Now that we have seen part of smart_ptr’s ex-
ception interface, we will apply that algorithm to one
of the functions in smart_ptr. Since the modularity
of smart_ptr’s design results in a lot of short, mostly

trivial functions, we’ll take a look at the most com-
plex function in the library (at least from an excep-
tion analysis point of view): smart_ptr::release().

1void release(this_type& sp, stored_type& p) {
2checking_policy::on_release(get_impl(sp));
3ownership_policy::on_release(sp);
4p = get_impl_ref(sp);
5get_impl_ref(sp) =
6storage_policy::default_value();
7ownership_policy::reset(sp);
8}

Recall that we start out with the state tu-
ple: 〈safety : nothrow, purity : true, exception set :
∅, caught set : ∅〉. The first call to analyze
is get_impl(). Since get_impl() is defined to
be nothrow, we need not consider caught set for
this operation. Further, Purity(get_impl()) ==
true and Safety(get_impl()) == nothrow, so we
can move on to the next operation, which is
checking_policy::on_release().

Now, checking_policy::on_release() may
throw, which is the whole point of a checking
policy. Also, it is not smart_ptr’s responsibility
to deal with that exception (or any exception
thrown by a policy), so caught set will remain
empty for the duration of the analysis. Since
Safety(checking_policy::on_release()) ==
strong, we need to check its purity. Indeed, it is
required to be pure, so we set safety to min(strong,
safety), which is strong. We’re now in state
〈strong, true, ∅, ∅〉.

Next, we check ownership_policy::on_release().
This may also throw, but it is also strong and
pure, just like checking_policy::on_release().
Thus, the state remains unchanged. Because
get_impl_ref() has the same exception properties
as get_impl(), we can skip over it, since it doesn’t
change the state (it’s the best type of operation
money can buy: pure nothrow).

Here’s where things get tricky. If we only had
one assignment, we would only need to require
stored_type::operator=() to be strong. That’s
because the remaining operations are nothrow. How-
ever, since we have two assignments, the operator
needs to be nothrow. Note that we ban the two

7



consecutive impure strong operations not so that we
can get the strong guarantee, but so that we can get
the basic guarantee! If line five were to succeed, but
line six threw an exception, both p and *this would
own the resource after the call, which would violate
an invariant of smart_ptr that requires that either
the smart pointers or an external pointer own the
resource, but not both.

Since the assignment is impure, we need to change
the state to 〈strong, impure, ∅, ∅〉. The second as-
signment won’t change this state. Next, we note
that default_value() is required to be nothrow
and pure, so we can skip over it, the call to
get_impl_ref(), and the assignment. Finally, we
check ownership_policy::reset(), see that it is
pure nothrow, and arrive at the end of our func-
tion. Our state did not change since the first as-
signment, so when all the dust settles, we end up
with 〈strong, impure, ∅, ∅〉. Thus, we can conclude
that smart_ptr::release() is an impure function
that provides the strong guarantee.

To double-check our work, we can see if it matches
the strong format given in the previous article [3]:

pure ∗ strong?nothrow∗
where “*” means “zero or many” (the Kleene star

known from regular expressions) and “?” means
“zero or one instances.” David Abrahams helped us
clarify that “pure” in the formulation above means a
“pure operation,” which can be a pure statement, a
call to a pure function, a call to an impure function
which only modifies local automatic state, or an im-
pure statement which only modifies local automatic
state. This is to avoid confusion with the notion of
“pure function,” which already has a well-established
meaning. We call the property of only modifying lo-
cal automatic data “operational purity.”

Now, get_impl(), checking_policy::
on_release(), and ownership_policy::
on_release() are all pure. Furthermore,
get_impl_ref(), stored_type::operator=(),
storage_policy::default_value(), and
ownership_policy::reset() are all nothrow.
So our function indeed has the form given above—
and so should yours.

Note that this algorithm can be useful in two
directions. Not only does it give you the safety

guarantee of the analyzed function, it can also help
you decide what guarantees you require of the com-
ponent operations. In the case of smart_ptr, it
helps us impose minimum guarantees on various pol-
icy functions. Also note that some of the con-
straints were not derived so as to obtain the strong
guarantee, but merely to get the basic guaran-
tee, and we got the strong guarantee as a bonus
(our algorithm is conservative). For instance, if we
were to allow storage_policy::default_value()
to only provide the strong guarantee, we would break
the invariant mentioned before in the discussion of
stored_type::operator=(). If we were to allow
ownership_policy::reset() to only give the strong
guarantee, the ownership policy could get out of sync
with the rest of smart_ptr, breaking another invari-
ant.

5 Conclusions

Whew, that was long. We took a close look at the be-
havior of smart_ptr’s constructor in the presence of
exceptions thrown by its policies. During initializa-
tion of an object that inherits or contains several oth-
ers, we encounter a “who’s holding the hot potato”
issue: if a subobject throws an exception, things are
not under the control of the big object. The problem
lies beyond policies and pertains to any object that
needs to manage several resources (remember the A
and its two Bs?). We described two idioms for han-
dling that. One uses a constructor try block and an
extra concealed argument to the constructor. The
other defines a little resource_manager class that
glues together critical resources.

The amended smart_ptr implementation behaves
properly when its policies throw exceptions. (Or so
we think.) In the process of hacking at smart_ptr,
we learned a lot—learnings that we hope we passed to
you, too. Now we have more structure, more idioms,
terminology, and an informal algorithm to assess the
exception safety of a function.

In the next installment, we’re ready to give
smart_ptr a test drive and to compare its speed and
mileage with other consecrated smart pointers.

8



6 Acknowledgments

@@@Will go here.

References

[1] David Abrahams. Exception safety in stl-
port, 1997. URL http://www.stlport.org/
doc/exception_safety.html.

[2] Andrei Alexandrescu and David B. Held.
Generic<programming>: Smart pointers re-
loaded. C/C++ Users Journal, October
2003. URL http://moderncppdesign.com/
publications/cuj-10-2003.html.

[3] Andrei Alexandrescu and David B. Held.
Generic<programming>: Smart pointers re-
loaded (ii). C/C++ Users Journal, Decem-
ber 2003. URL http://moderncppdesign.com/
publications/cuj-12-2003.html.

[4] Herb Sutter. Guru of the week 82: Excep-
tion safety and exception specifications: Are they
worth it? URL http://www.gotw.ca/gotw/082.
htm.

9


