
Lock-Free Data Structures with Hazard Pointers

Andrei Alexandrescu Maged Michael

October 16, 2004

I am very honored to introduce Maged Michael as a
coauthor of this Generic〈Programming〉 installment.
Maged is a leading authority in lock-free algorithms,
and has found incredibly ingenious solutions to hard
problems [3]. We’ll be presenting one such exciting
solution in the article you’re now reading, having An-
drei fulfill the modest role of kibitz-in-charge. The
algorithm described henceforth manipulates limited
resources to achieve goals in a “so cool it’s indistin-
guishable from magic” way.

So if Generic〈Programming〉 were a soap opera,
this episode is going to shoo the villain away. To
remind who the villain was, let’s review the previous
episode [1]. (By the way, call it author lock-in, but
the rest of this article assumes you have given at least
a in-the-subway read of the previous installment of
Generic〈Programming〉, and that you are somewhat
acquainted with the problem we’re addressing.)

So, the past article, after introducing the concept
of lock-free programming, set out to implement lock-
free “Write-Rarely-Read-Many” maps. These struc-
tures are often encountered in the form of global ta-
bles, factory objects, caches, etc. The problem was
memory reclamation: given that things are lock-free,
how can memory be freed? As discussed, this is a
tough problem because lock-free implies unrestricted
opportunity for a thread to operate on any object, at
any time. To address that problem, the past article
tried to:

• Use reference counting with the map. That ap-
proach was doomed to failure because it needed
to update the pointer and the reference count
(sitting at a different location) at the same time
(atomically). In spite of a small flurry of pa-
pers using the elusive DCAS (Double Compare-

And-Swap) instruction that does exactly that,
the concept never caught on because we can do
a lot without it and it is not powerful enough for
implementing arbitrary transactions efficiently.
See [2] for a discussion of the usefulness of DCAS.

• Wait and delete. Once a thread figures out a
pointer is to be

������
d, it can wait for a “suf-

ficiently long time” and then
������

it. The
problem is deciding how long to wait. This so-
lution sounds an awful lot like “allocate a large
enough buffer”—and we all know how well that
works.

• Keep a reference count next to the pointer. That
solution uses the less-demanding, reasonable-
to-implement CAS2 primitive, which is able
to atomically compare-and-swap two adjacent
words in memory. Most 32-bit machines have
it, but not a lot of 64-bit machines (on the lat-
ter, however, there are tricks you can play with
the bits inside the pointer).

That last approach turned out to work, but it also
turned our shiny “Write-Rarely-Read-Many” map
into a much less glorious “Write-Rarely-Read-Many-
But-Not-Too-Many” map. This is because writers
need to wait for a quantum of time when there are
absolutely zero readers. As long as at least one reader
starts before all other readers finish using the map,
the writer threads wait powerlessly—and that ain’t
lock-free anymore.

Detective Bullet entered his debtor’s office, sat on

a chair, lit his pipe, and uttered calmly with a tone

that could have frozen the boiling coffee in the pot: “I

am not leaving until I have my money back.”

1

A possible approach using reference counting is to
separate the reference counter from the pointer. Now
writers will not be blocked by readers anymore, but
they can free replaced maps only after they observe
the reference counter with a zero value [5]. Also,
using this approach we only need single word CAS,
which makes the technique portable to architectures
that don’t support CAS2. However, there is still a
problem with that approach. We didn’t eliminate
the wait, we just deferred it—and gave opportunity
for more damage in terms of memory consumption.

Detective Bullet coyly opened his debtor’s office

door and asked hesitantly: “Do you have my $19,990

yet? No? Oh, no problem. Here is my last $10.

I’ll drop by some other time to see if you got my

$20,000.”

There is no bound on the number of replaced maps
that are kept by the writers without being reclaimed
waiting—possibly forever—for the reference count to
go down to zero. That is, the delay of even one reader
can prevent unbounded amount of memory from be-
ing freed, and the longer that reader is delayed, the
worse it gets.

What’s really needed is some mechanism for read-
ers to tell writers to not reclaim replaced maps from
under them, but without allowing the readers to force
the writers to hang on to unbounded number of re-
placed maps. There is a solution [3] that is not only
lock-free, but actually wait-free. (To recap the defi-
nitions in our previous installment: lock-free means
that progress is guaranteed for some thread in the
system; the stronger wait-free means that progress is
guaranteed for all threads.) Moreover, this method
asks for no special operations—no DCAS, no CAS2,
only the trusty CAS. Interested? Read on.

1 Hazard Pointers

To bring up the code again, we have a template
WRRMMap that holds a pointer to some classic single-
threaded Map object (think std::map) and provides
a multithreaded lock-free access interface to it:
���� ����

<����� K, ����� V>

����� WRRMMap {

Map<K, V> * pMap_;

...

};

Whenever the WRRMMap needs to be updated, the
thread wanting to do so creates an entire new copy
of the map pointed to by pMap_, replaces pMap_ with
that new copy, and then disposes of the old pMap_.
We agreed that that’s not an inefficient thing to
do because WRRMMap is read often and updated only
rarely. The nagging problem was, how can we dis-
pose of pMap_ properly, given that there could be
other threads reading through it at any time?

Hazard pointers are a safe, efficient mechanism
for threads to advertise to all other threads about
their memory usage. Each reader thread owns a
single-writer multi-reader shared pointer called haz-

ard pointer. When a reader thread assigns the ad-
dress of a map to its hazard pointer, it is basically an-
nouncing to other threads (writers) “I am reading this
map. You can replace it if you want, but don’t change
its contents and certainly keep your

������
ing hands

off it.”

On their part, writer threads have to check the haz-
ard pointers of the readers before they can

������

any replaced maps. So, if a writer removes a map
after a reader (or more) has already set its hazard
pointer to the address of that map, then the writer
will not

������
that map as long as the hazard

pointer remains unchanged.

Whenever a writer thread replaces a map, it keeps
the old pointer in a private list. After accumulating
some number of removed maps (we’ll discuss later
how to choose that number), the thread scans the
hazard pointers of the readers for matches for the ad-
dresses of the accumulated maps. If a removed map
is not matched by any of the hazard pointers, then
it is safe for this map to be deallocated. Otherwise,
the writer thread keeps the node until its next scan
of the hazard pointers.

Below are the essential data structures used. The
main shared structure is a singly-linked list of haz-
ard pointers (HPRecType), pointed to by pHead_.
Each entry in the list contains the hazard pointer
(pHazard_), a flag that tells whether the hazard
pointer is in use or not (active_), and the obliga-
tory pointer to the next node (pNext_).

2

HPRecType offers two primitives: Acquire and
Release. HPRecType::Acquire gives a thread a
pointer to a HPRecType, call it p. From then on, that
thread can set p->pHazard_ and rest assured that all
other threads will tread carefully around that pointer.
When the thread does not use the hazard pointer any-
more, it will call HPRecType::Release(p).

// Hazard pointer record

����� HPRecType {

HPRecType * pNext_;	
�
active_;

// Global header of the HP list���� 	� HPRecType * pHead_;

// The length of the list���� 	� 	
�
listLen_;��� �	�:

// Can be used by the thread

// that acquired it
�	� * pHazard_;

���� 	� HPRecType * Head() {
�����
 pHead_;

}

// Acquires one hazard pointer���� 	� HPRecType * Acquire() {

// Try to reuse a retired HP record

HPRecType * p = pHead_;��� (; p; p = p->pNext_) {	�
(p->active_ ||

!CAS(&p->active_, 0, 1))

��
� 	
��;
// Got one!
�����
 p;

}

// Increment the list length	
�
oldLen;�� {

oldLen = listLen_;

} �� 	�� (!CAS(&listLen_, oldLen,

oldLen + 1));

// Allocate a new one

HPRecType * p =

�� HPRecType;

p->active_ = 1;

p->pHazard_ = 0;

// Push it to the front�� {

old = pHead_;

p->pNext_ = old;

} �� 	�� (!CAS(&pHead_, old, p));
�����
 p;

}

// Releases a hazard pointer���� 	� �	� Release(HPRecType* p) {

p->pHazard_ = 0;

p->active_ = 0;

}

};

// Per-thread private variable

__per_thread__ vector<Map<K, V> *> rlist;

Each thread holds a retired list (actually a vector<

Map<K,V>*> in our implementation)—a container
keeping track of the pointers that this thread finds
are not needed anymore and could be

������
d as

soon as no other threads use them. This vector need
not be synchronized because it’s in per-thread stor-
age; only one thread will ever access it. We gloss over
the tedium of allocating thread-local storage by using
the magic qualifier __per_thread__.

Given this setup, all a thread needs to do when-
ever wanting to dispose of pMap_ is call the Retire

function below. (Note that, as in the previous
Generic〈Programming〉 instance, we do not insert
memory barriers for the sake of clarity.)

���� ����
<����� K, ����� V>

����� WRRMMap {

Map<K, V> * pMap_;

...�� 	���:���� 	� �	� Retire(Map<K, V> * pOld) {

// put it in the retired list

rlist.push_back(pOld);	�
(rlist.size() >= R) {

Scan(HPRecType::Head());

}

}

};

Nothing up our sleeves! Now, the Scan function
will perform a set difference between the pointers in

3

the current thread’s retired list, and all hazard point-
ers for all threads. What does that set difference
mean? Let’s think of it for a second: it’s the set of
all old pMap_ pointers that this thread considers use-
less, except those that are found among the hazard
pointers of all threads. But, hey, these are exactly
the goners! By definition of the retired list and that
of the hazard pointers, if a pointer is retired and not
marked as “hazardous” (i.e. “in use”) by any thread,
the set intersection of the two sets yields precisely the
pointers that can be

������
d.

2 The Main Algorithm

Ok, now let’s see how to implement the Scan algo-
rithm, and what guarantees it can provide. We need
to perform a set difference between rlist and pHead_

whenever performing a scan. That operation tanta-
mounts to “for each pointer in the retired list, find
it in the hazard set. If it’s not, it belongs to the dif-
ference, so it can be

������
d.” To optimize that,

we can sort the hazard pointers before lookup, and
then perform one binary search in it for each retired
pointer. Let’s take a look at such an implementation
of Scan:

�	� Scan(HPRecType * head) {

// Stage 1: Scan hazard pointers list

// collecting all non-null ptrs

vector<�	�*> hp;

�� 	�� (head) {
� 	� * p = head->pHazard_;	�

(p) hp.push_back(p);

head = head->pNext_;

}

// Stage 2: sort the hazard pointers

sort(hp.begin(), hp.end(),

less<�	�*>());
// Stage 3: Search for’em!

vector<Map<K, V>*>::iterator i =

rlist.begin();

�� 	�� (i != rlist.end()) {	�
(!binary_search(hp.begin(),

hp.end(),

*i) {

// Aha!

������
*i;	�

(&*i != &rlist.back()) {

*i = rlist.back();

}

rlist.pop_back();

}
����

{

++i;

}

}

}

The last loop does the actual work. It uses a little
trick to optimize away shuffling the rlist vector: af-
ter

������
ing a removable pointer in rlist, it over-

writes that pointer with the last element in rlist,
after which it eliminates that last element. This is
allowed because elements in rlist needn’d be sorted
in any particular order.

We availed ourselves of the C++ standard func-
tions sort and binary_search. But you can replace
the vector with your favorite easily-searchable struc-
ture, such as a hashtable. A well-balanced hashtable
has constant expected lookup time, and is very easy
to construct because it is totally private and you
know all the values in it before organizing it.

What performance guarantees can we make about
Scan? First off, notice that the entire algorithm is
wait-free (as advertised in the introduction): there
are no loops in which a thread’s execution time de-
pends on other threads’ behavior.

Second, the average size of rlist is the arbitrary
value R that we chose as our threshold for firing Scan

(see the WRRMMap<K, V>::Replace function above).
If we organize the hazard pointers in a hash table
(instead of the sorted vector hp used above), the ex-
pected complexity of the Scan algorithm is O(R). Fi-
nally, the maximum number of removed maps that
are not yet

������
d is N ·R, where N is the number

of writer threads. A good choice for R is (1 + k)H,
where H is the number of hazard pointers (listLen
in our code, and equal to the number of readers in
our example) and k is some small positive constant,
say 1/4. So R is a number greater than H and pro-
portional to it. In that case, each scan is guaranteed
to

������
R−H nodes (that is O(R) nodes) and—if

we use a hash table—takes expected time O(R). So,

4

the expected amortized time for determining that a
node is safe to

������
is constant.

3 Tying WRRMMap’s loose ends

Now, let’s stitch the hazard pointers into WRRMap’s
primitives, namely Lookup and Update. For writers
(threads executing Update), all they need to do is
call WRRMap<K, V>::Retire in the place where they
would normally

������
pMap_.

�	� Update(��
 �� K&k, ��
 �� V&v){

Map<K, V> * pNew = 0;�� {

Map<K, V> * pOld = pMap_;������
pNew;

pNew =

 �� Map<K, V>(*pOld);

(*pNew)[k] = v;

} �� 	�� (!CAS(&pMap_, pOld, pNew));

Retire(pOld);

}

The readers need first to get a hazard pointer by
calling HPRecType::Acquire, then set it to the pMap_
used for searching through. When it is done with a
pointer, the thread releases the hazard pointer by
calling HPRecType::Release.

V Lookup(��
 �� K&k){

HPRecType * pRec = HPRecType::Acquire();

Map<K, V> * ptr;�� {

ptr = pMap_;

pRec->pHazard_ = ptr;

} �� 	�� (pMap_ != ptr);

// Save Willy

V result = (*ptr)[k];

// pRec can be released now

// because it’s not used anymore

HPRecType::Release(pRec);
�����
 result;

}

But, why does the reader need to recheck pMap_?
Consider the following scenario. pMap_ points to the
map m. The reader reads &m from pMap_ into ptr,
then goes to sleep before it can set its hazard pointer

to &m. In the meantime, a writer sneaks from behind,
updates pMap_, and retires the map at m. It then
checks the hazard pointer of the reader and finds not
equal to &m. The writer concludes that it is safe to
deallocate m and does so. Now the reader wakes up
and sets its hazard pointer to &m. If that was all
and the reader goes to dereference ptr, it will read
corrupt data or access unmapped memory.

This is why the reader needs to check pMap_ again.
If pMap_ is not equal to &m, then the reader is not
really sure that the writer who removed m has seen
its hazard pointer set to &m. So it is not safe to go
ahead and read from m, and the reader should start
over.

If the reader finds pMap_ pointing to m, then it is
safe to read from m. Does that mean that pMap_

hasn’t changed in the time between the two reads?
Not necessarily. m could have been removed from
and installed in pMap_ one or more times during that
interval, and that doesn’t matter. What matters is
that at the time of the second read, m is certainly
not removed (because pMap_ points to it) and at that
point the reader’s hazard pointer already points to it.
So from that point forward (until the hazard pointer
is changed) it is safe for the reader to access m.

Now, both lookup and update are lock-free (ad-
mittedly not wait-free though): readers don’t block
writers, or get in each other’s way (unlike reference
counting). It’s the perfect Write-Rarely-Read-Many
map: reads are very fast and don’t interfere with one
another, and updates are still fast and guaranteed to
make global progress.

If we want lookups to be wait-free, we can use the
trap technique [4] which is built on top of hazard
pointers. In the code above, when a reader sets its
hazard pointer to ptr it is basically trying to capture
a specific map *ptr. Using the trap technique, the
reader can set a trap that will definitely capture some

valid map, and so the lookup becomes wait-free—as
it is the case if we have automatic garbage collection
(remember last article). For the gory details of the
trap technique, see [4].

5

4 Generalization

We’re pretty much done with a solid map design.
There are a few more things worth addressing, that
we’d like to mention here to give you a comprehen-
sive overview of the technique. We point you to the
paper [3] for full reference.

We figured out what to do to share a map, but
what if we need to share many other objects? That’s
not a problem; first, the algorithm extends naturally
to accomodate multiple hazard pointers per thread.
But oftentimes, there are very few pointers that a
thread needs to protect simultaneously at any given
time. Besides, hazard pointers can be “overloaded”—
reason for which, by the way, they are untyped
(�	�*) in the HPRecType structure: a thread can
use the same actual hazard pointer on any number of
data structures as long as it is operating on them one
at a time. Most of the time one or two hazard point-
ers per thread are enough for the whole program.

Finally, notice that Lookup compulsively calls
HPRecType::Release as soon as it is done doing one

lookup. In a performance-minded application, the
hazard pointer could be acquired once, used for mul-
tiple lookups, and released only later.

5 Conclusion

People have for so long tried to solve the memory
deallocation problem with lock-free algorithms, at a
point it looked like there is no satisfactory solution.
However, with a minimum scaffolding and by maneu-
vering carefully between thread-private and thread-
shared data, it is possible to devise an algorithm
that gives strong and satisfactory speed and mem-
ory consumption guarantees. Besides, although we
used WRRMMap as an example throughout, the hazard
pointers technique is of course applicable to much
more complex data structures. The memory recla-
mation problem is more important in dynamic struc-
tures that can grow and shrink arbitrarily, for exam-
ple, a program that has thousands of linked lists that
may grow to have millions of dynamic nodes and then
shrink. That would be where hazard pointers would
show their full power.

The worst that a reader thread could ever do is die
and leave all of its hazard pointers set, thus forever
keeping allocated at most one node for each of its
hazard pointers.

Detective Bullet rushed into his debtor’s office and

figured out at once he won’t get his money today.

Without missing a beat, he said: “You’re on my list,

pal. I’ll come after you again. Only death can absolve

you, and even in that case, you’ll never be able to be

in debt more than $100. Cheers.”

6 Acknowledgments

Will go here.

References

[1] Andrei Alexandrescu. Generic〈Programming〉:
Lock-Free Data Structures. C++ Users Journal,
October 2004.

[2] Simon Doherty, David L. Detlefs, Lindsay Grove,
Christine H. Flood, Victor Luchangco, Paul A.
Martin, Mark Moir, Nir Shavit, and Jr. Guy
L. Steele. DCAS is not a silver bullet for non-
blocking algorithm design. In Proceedings of the

sixteenth annual ACM symposium on Parallelism

in algorithms and architectures, pages 216–224.
ACM Press, 2004. ISBN 1-58113-840-7.

[3] Maged M. Michael. Hazard Pointers: Safe Mem-
ory Reclamation for Lock-Free Objects. In IEEE

Transactions on Parallel and Distributed Sys-

tems, pages 491–504. IEEE, 2004.

[4] Maged M. Michael. Practical Lock-Free and Wait-
Free LL/SC/VL Implementations Using 64-Bit
CAS. In Proceedings of the 18th International

Conference on Distributed Computing, LNCS vol-

ume 3274, pages 144–158, October 2004.

[5] Hong Tang, Kai Shen, and Tao Yang. Pro-
gram transformation and runtime support for
threaded MPI execution on shared-memory ma-
chines. ACM Transactions on Programming Lan-

6

guages and Systems, 22(4):673–700, 2000. URL
citeseer.ist.psu.edu/tang99program.html.

7

