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ABSTRACT

We introduce graph-based learning for acoustic-phonetic
classification. In graph-based learning, training and test data
points are jointly represented in a weighted undirected graph
characterized by a weight matrix indicating similarities be-
tween different samples. Classification of test samples is
achieved by label propagation over the entire graph. Al-
though this learning technique is commonly applied in semi-
supervised settings, we show how it can also be used as a post-
processing step to a supervised classifier by imposing addi-
tional regularization constraints based on the underlying data
manifold. We also present a technique to adapt graph-based
learning to large datasets and evaluate our system on a vowel
classification task. Our results show that graph-based learning
improves significantly over state-of-the art baselines.

Index Terms— acoustic modeling, graph-based learning,
classification, adaptation

1. INTRODUCTION

Acoustic modeling in automatic speech recognition (ASR)
systems typically follows a well-established paradigm, that of
hidden Markov models (HMMs) with Gaussian mixture (GM)
based modeling of output distributions. In state-of-the-art
systems, models typically undergo discriminative training and
are adapted to test data using techniques such as MLLR [1]
or MAP [2].

Several alternative or complementary approaches have
been explored in the past, including different ways of mod-
eling output distributions, such as Support Vector Machines
(SVMs) [3] and neural networks [4], as well as novel training
techniques, such as large-margin training [S]. However, the
mainstream ASR community has been slow to adopt these
(with some exceptions, such as [6, 7]), mainly because the
standard methodology is well-tested, efficient, and easy to
use, and also because new models or learning procedures may
not scale well to large datasets.

Continued progress in ASR, however, does require ex-
ploring novel approaches, including new machine learning
techniques, as well as adapting these to large data sets and the
computational constraints that present-day ASR systems are
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subject to. In this paper we investigate graph-based learning
as a way to improve over standard acoustic models.

Graph-based learning (not to be confused with graphical
models) is a machine learning technique that jointly repre-
sents training and test data points as nodes in a graph. The
graph edges are weighted with scores representing the simi-
larity between data points. Based on this representation, sev-
eral algorithms can be used to assign labels to the unlabeled
(test) points, including spectral graph transducers (SGT) [8],
random walks [9], and label propagation [10], each of which
implements a particular classification function over the graph.
The advantage shared by these approaches is that classifi-
cation is based on a global consistency assumption: sam-
ples close to each other (in terms of the similarity function
used in building the graph) should receive the same label.
This applies to both the labeled and the unlabeled samples,
i.e., the classification function exploits similaritics between
test samples in addition to similarities between test and train-
ing samples. In contrast, traditional systems (such as nearest-
neighbor) only rely on similarity between the test and train-
ing samples. Graph-based learning is typically used in a
semi-supervised, transductive setting where a relatively small
amount of labeled data is used in conjunction with a large
amount of unlabeled data. However, as we will show below,
it can also be used as a postprocessing step applied to a stan-
dard supervised classifier trained on a large amount of labeled
data and tested on a small amount of unseen data, which is
the typical scenario in speech processing. In this case, graph-
based learning provides a form of adaptation to the test data
by constraining the decisions made by the first-pass classifier
to accommodate the underlying structure of the test data.

One concern with graph-based learning in its original
form is scalability. We present a sample merging technique
that dramatically reduces the graph size and makes it essen-
tially independent of the amount of training data, as well as
a fast hyperparameter calibration technique that can be done
offline (before the test data is seen) and works well. We
present results on an 8-class vowel classifier with the goal
of demonstrating the effect on speaker adaptation. Our ap-
proach improves significantly over state-of-the-art adaptation
algorithms.



2. GRAPH-BASED LEARNING

Graph-based learning algorithms have been the focus of
much recent machine learning research [11, 9, 12, 13]. In
graph-based learning, data points (1, ...,[ labeled points and
l +1,...,n unlabeled points) are arranged in a weighted
undirected graph. The graph is characterized by a weight
matrix W, whose elements W;; > 0 are similarity mea-
sures between vertices ¢ and j, and by its initial label vec-
tor Yy, = (y1,---w),y; € {1,...,C}, that defines labels
for the first [ points. If there is no edge linking nodes ¢ and
J, Wi = 0. Other than that, applications have considerable
freedom in choosing the edge set and the W;; weights. For
example, a matrix can be defined as W;; = 1 if z; and z;
fall within each other’s k£ nearest-neighbors (and zero other-
wise). Another commonly-used weight matrix is defined by a
Gaussian kernel:
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where d(z;,z;) is the (estimated) distance between feature
vectors x; and x; and « is a bandwidth hyperparameter. Var-
ious distance measures can been used, e.g. Cosine distance,
Euclidean distance, Jeffries-Matusita distance, or Jensen-
Shannon divergence. The distance measure determines the
graph construction and is the most important factor in suc-
cessfully applying graph-based learning.

Learning algorithms defined on graphs include e.g. Blum
and Chawla’s mincut algorithm [11], Szummer and Jaak-
kola’s random walk-based approach [9], and label propaga-
tion [10]. In this work, we use the latter.

2.1. Label Propagation

Label propagation [10] is a representative graph-based learn-
ing algorithm and operates in a semi-supervised manner by
taking advantage of both training and test samples during
learning. Once W is constructed, the basic label propagation
algorithm proceeds as follows:

1. Initialize the matrix P as P;; = E‘;V;{,ij

2. Initialize an x C matrix f with binary vectors encoding
the known labels for the first [ rows: f; = dc(y;) Vi €
{1,2,...,1} (the remaining rows of f can be zero)

3. f'«<Pxf

4. Clamp already-labeled data rows: f; = dc(y;) Vi €
{1,2,...,1}

5. If f' = f, stop

6. f« [

7. Repeat from step 3

The f matrix contains the solution in rows [ + 1 to n in the

form of label probability distributions. Figure 1 shows a graph
before and after the label propagation process.
Many applications need hard labels, obtainable by:

gi:argmaxfij ViE{l—}—l,...,’rL} )
J

Fig. 1. A graph before and after label propagation. The la-
bels are encoded as white and black, and all edges have unit
weight. The process fills the unlabeled nodes with shades of
gray, depending on the connectivity with neighboring nodes.
Nodes are filled even when they don’t directly connect with
any of the labeled nodes.

It is easy to prove [14] that the algorithm converges to the
analytic solution:

fuv=U~-Pyy) 'PurYs 3)

where Py, is P’s submatrix connecting unlabeled to labeled
samples (rows [ + 1 to n and columns 1 to 1), Py is P’s sub-
matrix connecting unlabeled samples with one another (rows
[+ 1 ton and columns [ + 1 to n), and Y7, is the [ x C matrix
encoding the known labels: Y7, (s ) = dc(y:). Practical ap-
plications might still implement the iterative variant as it does
not require matrix inversion.

The fixed point of the label propagation algorithm mini-
mizes the following cost function:
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This cost function has an obvious minimum when all samples
are assigned the same label, so an additional restriction is that
the estimated labels for the known data points must coincide
with their actual labels:

S measures the extent to which the labeling allows large
weight edges to link nodes of different labels. The label prop-
agation algorithm finds a labeling that, to the extent possible,
assigns identical labels to nodes linked by high weights.
Label propagation has been used successfully for various
classification tasks, e.g. image classification and handwritten



digit recognition [ 14]. In natural language processing, LP has
been used for document classification [14], word sense dis-
ambiguation [15], and sentiment categorization [16].

3. GRAPH-BASED ACOUSTIC CLASSIFICATION

Applying graph-based learning to acoustic classification rai-
ses unique challenges:

o Similarity measure: As mentioned, choosing an appro-
priate similarity measure is key to graph-based learn-
ing. It is unclear what similarity measure would be op-
timal in acoustic feature spaces.

e Scalability: Acoustic data is typically available in large
quantities. In its basic setup as described above, a graph
is constructed in memory for the entire training data
and the test data at once, which is infeasible for all but
very small databases.

e Adaptation: Originally, graph-based learning was for-
mulated for semi-supervised scenarios, where a large
amount of unlabeled but a small amount of labeled data
are present. In typical speech processing applications,
we find the opposite situation. In these cases, graph-
based learning can still be of benefit due to the global
consistency assumption it enforces, thus effectively im-
plementing a form of test data adaptation. However,
this requires changes to the basic algorithm.,

The following subsections describe in detail how our sys-

tem addresses these challenges.

3.1. Similarity Measure

Most work in graph-based learning has used standard distance
measures such as Cosine or Euclidean distance.

A data-driven method presented in previous work [17] de-
fines distances on the outputs of a first-pass classifier. The re-
sulting feature space consists of probability distributions over
the desired classes, and probability divergence measures with
well-understood statistical properties can thus be used as dis-
tance measures. Our experiments use a neural network with
softmax output, trained on the original MFCC features, as the
first-pass classifier. We use the Jensen-Shannon divergence as
a distance measure:

ds(@1,Q2) = 5 [Dxu(@IM) + D (@:lIM)) - ©

where (01, ()2 are probability distributions, M = w, and
Dx1.(Q1]|Q2) is the Kullback-Leibler divergence:
N QD)
D = 1 7
kL(@1]|Q2) ;QM) % 0, () (7

If in (7) we define log % = (), then the Jensen-Shannon diver-
gence is well-defined, continuous, and bounded.

The distance djg is converted to a similarity measure by
using a Gaussian kernel of parameterized width (1).

3.1.1. Hyperparameter Optimization

The quality of the similarity measure hinges not only on
choosing a good distance measure, but also on finding a good
value for the hyperparameter « in (1). Choosing the opti-
mal « is an open research question; several heuristic methods
have been used in practice. In [14], « is optimized to yield
a labeling of minimum entropy, subject to the constraint that
the labeling must respect the labels of the training set. How-
ever, optimizing a by using gradient descent for each utter-
ance adds considerable overhead to the classification time.
We propose an efficient method of calibrating « that
works offline (only uses the training data) and is inspired by
maximum margin techniques. First, we compute the average
intra-class distance (dinga) and inter-class distance (dinger):

> d(wi,z) > dwi,)
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where Ninga and Nineer are the counts of the respective terms.
Ideally, diggra > dinger by a large margin, otherwise the data has
poor separability. We then choose a such that two samples

distanced at d‘“““‘gdi""“ have a similarity of 0.5:

exp |— (dintra + dinter)2 — 1 = = dintra + dinter (9)
4a? 2 2v/1n 2
The intuition behind this choice is that, given that similarity
has range [0, 1], two samples placed at the most ambiguous
distance should be midway in terms of similarity as well.
Computing the average distances dipy, and diger Would
necessitate O(I2) distance computations, one for each pair
of training samples. A time-efficient approach we choose in
practice is to do a random sampling: two samples z; and x;
are randomly chosen from the training set, their distance is
computed and considered for dinga, if y; = y;, or for diter
otherwise. We used 2.5% of the data in five successive tri-
als; « varied by no more than 1% among trials. Choosing
in this manner yielded much better performance in our tests
than grid search and a method based on the minimum span-
ning tree [14, § 7.3].

3.1.2. Interpolation with Prior Distributions

For the training set we have access to the true labels and con-
sequently to the sample prior probability distributions:

PY = (01,...,0y,-1,1y,,04p,41,...,00) = dc(y:) (10)

(8¢ (1) denotes a Kronecker vector of length C with 1 in the [
position and O elsewhere.) These prior distributions represent
the ground truth, so they are highly informative for classifi-
cation. Using them exclusively, however, would lose smooth-
ness information, so they should best be used in interpolation
with the soft predictions resulting from the first-pass classi-
fier running against its own training data. We chose an equal-

weight interpolation PJ;P” throughout our experiments.




3.2. Scalability

The drawback of graph-based learning is its computational
inefficiency: typically, the graph is constructed on-demand
for the joint training and test set, which requires large memory
and many CPU operations. However, a dramatic reduction in
the number of nodes is possible without a loss in precision.
A simple algorithm (outlined below) reduces the number of
labeled nodes from ! to C' without impacting the final result.
The size of the graph becomes essentially independent from
the amount of training data used. The intuition behind the
reduction process is that labeled nodes having the same label
can be “collapsed” together because their identity does not
matter.

Proposition. Consider the matrices P (size n X n) and
f (size n x C) initialized for the label propagation iterative
algorithm (§ 2.1). Define the matrix R(a,b) (where 1 < a <
b <) of size (n — 1) x (n — 1) obtained from P by adding
the a™ column to the b column, followed by eliminating the

a'™ row and a' column:

Pii1 ... Pra-1 P1a41 P1,a+P1p
R(a b) _ | Pa=1,1 - Pa—=1,a=1 Pa—=1,a+1 -+ Pa=1,atPa—1b ---
'Y/ 7 | Pag1,1 -+ Pati,a—1 Pat1,a41 - Pat1,a+Pat1,b -
Pp1 -~ Ppa—1 Ppnat1 -+ PnatPup

T

Define the matrix g(a) obtained by eliminating f’s a™ row:

fia fi,2 fie
fa,—ll fa—12 fa—lC
a) = ) ) ) 12
9(@) fa+1,1 fav1,2 far1,0 (12
fn,l fn,C’

If the rows a and b of f are identical, then using R(a,b) and
g(a) for label propagation yields the same label predictions
(the bottom 1 — [ rows of g) as using P and f.

Proof. Consider the iterative step f' < P x f. The element

frjis:

n n
frj = ZPk,z’fi,j = Pyafaj+ Prpfo + Z Pri fij
= i¢{at)
(13)
But f,.; = f»,; by the hypothesis, therefore:

n
fri=Pra+Pep)foj+ Y, Peifi; (14
igfa}
It can be easily verified by inspection that f; ; = g'(a)y,; for
1< k< aand f,;’j = g'(a)g—1,; fora < k < n, where
g'(a) = R(a,b) x g(a). As a < I (by the hypothesis) and
the result of the algorithm is in rows [ + 1 to n, it follows by

induction that the iteration with R(a,b) and ¢'(a) will yield
identical labelings as iterating with P and f. O

This means that the label propagation problem can be
reduced by one labeled sample whenever there are two la-
beled samples having he same label. Applying the reduction
process iteratively, we obtain a reduced matrix R™" of size
(C+mn—1)x (C+n —1)and a reduced label matrix g™"
of size (C +n — 1) x C, an important reduction in size. The
process of reduction requires only O(n(n — 1)) additions and
does not require additional memory. In practice, starting with
the large matrix P is not even necessary; the matrix R™" can
be constructed in-place by accumulation.

After reduction, assuming (without loss of generality) that
labeled samples are ordered in increasing order of their labels,
the iteration formula becomes considerably simpler:

fu < Pyufu + Ry} (15)

The matrix fy can be stored in column-major order to ren-
der the multiplication cache-friendly. The Py matrix grows
with the square of unlabeled data count, growth controllable
by using a sparse structure that ignores distances beyond a
limit or cuts off the number of neighbors. Our data set had
test utterances short enough to allow affording a dense Py
matrix.

3.3. Adaptation

Adaptation is an important challenge in speaker-independent
ASR systems. Label propagation is inherently adaptive be-
cause it uses the self-similarity of the test data in addition
to the similarity of the test data with the training data. To
properly exploit the adaptive nature of label propagation, we
operate a simple but very helpful change to the matrix W.

Most graph-based learners represent each sample (train
or test) as a vertex. In classifying a test utterance using a
graph, that utterance’s group of vertices is much less numer-
ous than the training vertices. As such, the accumulated sim-
ilarity with the training samples will dwarf the self-similarity
of the cluster; effectively, classification tends to approximate
an unsophisticated nearest-neighbor technique. This is be-
cause in the random walk interpretation, the probability that
a random walk jumps straight to the closest labeled vertex is
much greater than the probability of the random walk explor-
ing neighboring unlabeled samples.

To benefit of adaptation, we want to manipulate the den-
sity of the graph in the region of the test utterance. We achieve
this by adjusting W;; linking unlabeled samples with one an-
other by:

l

Vix>1lj>1 (16)
This artificially simulates that there are as many test as train
samples, greatly enhancing the adaptive properties of the al-
gorithm, Although simple, this adjustment is extremely ef-
fective; without it, the classification degenerates in nearest-
neighbor (i.e., the algorithm in § 2.1 converges in exactly one
step) and never improves upon the first-pass classifier.



4. DATA

We performed initial exploratory experiments on an 8-vowel
classification task collected for the Vocal Joystick (VJ) proj-
ect [18], whose goal it is to develop voice-controlled assistive
devices for individuals with motor impairments. In the typi-
cal setup, a VJ user can exercise analog, continuous control
over mouse cursor movements by using vowel quality, pitch,
or loudness. One of the components of the VJ system is a
speaker-independent vowel classifier whose output is used to
control, for example, the direction in which a mouse cursor
moves. In this and similar scenarios, phonetic classification
that is robust against speaker variation is of utmost impor-
tance in order to avoid rejection of the system by the user due
to inaccurate recognition of control commands.

For training this classifier, a corpus was collected consist-
ing of 11 hours of recorded data of which we selected a subset.
The sizes of the train, development, and test data are shown
in Table 1.

Table 1. Training, development, and testing data used in the
Vocal Joystick experiments.

Set Speakers  Samples Non-silent audio
Training 21 420-10° 1.16h
Development 4 200-10% 0.56h
Test 10 80-10° 0.22h

This scenario is a good test bed for our proposed approach
since an already tuned, high-performing baseline system with
standard adaptation methods exists for this data set. In addi-
tion, the focus on phonetic classification allows us to focus on
the acoustic models while ignoring e.g. language model and
search effects that would characterize large-vocabulary sys-
tems. At the same time, this corpus is vastly more realistic
than the toy tasks used in machine learning since it contains
hundreds of thousands of samples.

5. EXPERIMENTS AND RESULTS

We tested our two-pass system by directly using the outputs of
the best classifier on the VJ corpus to date, created by Li [19].
Li’s classifier is a multi-layer perceptron (MLP) enhanced
with a regularized adaptation algorithm. The adaptation al-
gorithm uses a regularizer that prevents the regularized model
diverging too much from the unadapted system, thus avoiding
overtraining on adaptation data. We used the same MLP (50
hidden units and a window size of 7 samples) and the same
adaptation algorithm as Li.

We apply our system to both the non-adapted MLP out-
puts and the adapted outputs. In each case, a graph (of re-
duced size using the result of Proposition 1) was built for
each test utterance, after which iterative label propagation
was applied to the graph. As an additional baseline we use

GMMs (a) without adaptation and (b) with MLLR adaptation.
The adaptation experiments used 5-fold cross-validation, each
time using a held-out part of the test data for computing adap-
tation parameters. The results are shown in Table 2. Boldface
numbers are significantly better than the comparable base-
lines.

Table 2. Error rates (means and standard deviations over all
speakers) using a Gaussian Mixture Model (GMM), multi-
layer perceptron (MLP), and MLP followed by a graph-based
learner (GBL), with and without adaptation. The highlighted
entries represent the best error rate by a significant margin
(p < 0.001).

Model Error Rate (%)
Dev Test

GMM, no adaptation n/a 39.62
MLP, no adaptation 24.81£10.69 31.91+9.39
MLP+GBL, no adaptation  21.91+10.52  28.75+12.31
GMM-+adaptation n/a 20.05+3.76
MLP+adaptation n/a 12.18+3.51
MLP+adaptation+GBL n/a 8.32+3.21

The similarity of choice was Jensen-Shannon divergence,
which is theoretically motivated due to operation in prob-
ability space; to confirm that it is a good-quality dis-
tance, we compared it with dev set performance for two
commonly-used distance measures: Cosine distance and
Euclidean distance. They both engendered higher error
rates (22.62+11.23% for Cosine and 22.48+11.00% for Eu-
clidean).

6. DISCUSSION

We have shown that a graph-based learner applied to the out-
puts of a first-pass classifier significantly improves classifica-
tion results on an 8-vowel discrimination task. This holds for
both unadapted and adapted classifiers, i.e., the improvement
is additive to standard adaptation methods. In addition, we
have shown how graph-based learning can be used on large
data sets. The adaptation achieved by the graph-based learner
can be described within the framework of manifold regular-
ization [20], which formulates the optimal classifier as the
function:

!
F = argmin Zc(y,-,f(mi)) + M1+ X fiyLfru

i=1

a7

where c is a loss function describing the basic performance of
the classification function f, || f|| denotes parameter regular-
ization of the function, and the third term enforces smooth-
ness of f over the graph (the global consistency assumption).
The \’s are tunable weights. In our system described above,



the graph-based learner regularizes the first-pass classifier by
enforcing constraints corresponding to the third term in (17):
outputs are required to respect the underlying data manifold.
The first term corresponds to the basic training criterion for
the MLP and the second term to Li’s adaptive parameter regu-
larization. The difference is that the graph-based learner was
tuned independently of the MLP and its parameter regular-
ization instead of jointly. We intend to extend our current
framework to joint optimization in the future. Previous work
on adaptation in ASR has either ignored regularization or has
limited itself to parameter regularization (eg the regularized
MLLR algorithm). Manifold regularization is an important
new extension to current methods.

Further future work will include application to more com-
plex tasks, such as classification of more complex phone sets,
and application to ASR tasks.
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