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As its name suggests, the initial motivation for the D programming language was to improve on C and C++

while keeping their spirit. The D language was to preserve the efficiency, low-level access, and Algol-style

syntax of those languages. The areas D set out to improve focused initially on rapid development, convenience,

and simplifying the syntax without hampering expressiveness.

The genesis of D has its peculiarities, as is the case with many other languages. Walter Bright, D’s creator,

is a mechanical engineer by education who started out working for Boeing designing gearboxes for the 757.

He was programming games on the side and, in trying to make his game Empire run faster, became interested

in compilers. Despite having no experience, Walter set out in 1982 to implement a compiler that produced

better code than those on the market at the time.

This interest materialized into a C compiler, followed by compilers for C++, Java, and JavaScript. The best

known of these would be the Zortech C++ compiler, the only C++-to-native compiler to have been developed

by a single person. The D programming language began in 1999 as an effort to pull the best features of these

languages into a new one. Fittingly, D would use the mature C/C++ back end (optimizer and code generator)

that had been under continued development and maintenance since 1982.

Between 1999 and 2006, Walter worked alone on the D language definition and its implementation, although

a steadily increasing volume of patches from users was incorporated. The new language would be based on

the past successes of the languages he had used and implemented, but would be clearly looking to the future.

D started with choices that are obvious today but were less clear winners back in the 1990s: full support for

Unicode, IEEE floating point, two’s complement arithmetic, and flat memory addressing (memory is treated as

a linear address space with no segmentation). It would do away with certain compromises from past languages

imposed by shortages of memory (for example, forward declarations would not be required). It would primarily

appeal to C and C++ users, as expertise with those languages would be readily transferable. The interface

with C was designed to be zero cost.

The language design was begun in late 1999. An alpha version appeared in 2001 and the initial language

was completed, somewhat arbitrarily, at version 1.0 in January 2007. During that time, the language evolved

considerably, both in capability and in the accretion of a substantial worldwide community that became

increasingly involved with contributing. The front end was open-sourced in April 2002, and the back end was

donated by Symantec to the open source community in 2017. Meanwhile, two additional open-source back

ends became mature in the 2010s: gdc (using the same back end as the GNU C++ compiler) and ldc (using the

LLVM back end).

The increasing use of the D language in the 2010s created an impetus for formalization and development

management. To that end, the D Language Foundationwas created in September 2015 as a nonprofit corporation
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overseeing work on D’s definition and implementation, publications, conferences, and collaborations with

universities.
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fessional topics→ History of programming languages.
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1 THE SEATTLE SUMMIT
On August 23, 2007, over three dozen developers descended upon the Amazon campus in Seattle

for the first official D Programming Language Conference [na Roberts 2007a]. Organized by

Brad Roberts, a D contributor and Amazon employee, the three-day event had been a year in the

making [na Bright 2006a]. To the D community, it was a sign that, after seven years of development

and community building, D was finally going places.

D is a general-purpose programming language with support for procedural, object-oriented,

generic, generative, and functional programming. As of 2020, the language is employed by a variety

of companies [na D Language Foundation 2020b] in industry, systems programming, research, and

academia [na D Language Foundation 2020a]. But in 2007, it was barely a blip on anyone’s radar

and had yet to be proven in production. D had no sponsors and no funding. The conference was

organized on a shoestring budget [na Roberts 2006] and likely would not have happened at all

had Amazon not agreed to make its conference rooms available [na Roberts 2007b]. It was truly a

community-driven language.

Walter Bright andAndrei Alexandrescu opened and closed the conferencewith joint presentations

on their plans for D’s future [na Bright and Alexandrescu 2007]. Under headings such as “Object

Model Improvements” and “Simplifying Code”, they laid out a set of new language features that were

more transformative than the headings implied. And on the second day, while Bartosz Milewski

was starting his talk about software transactional memory in D, Walter and three members of the

D community found a quiet place to sit and discuss some differences they had about D’s runtime

library.

From 1999 until Andrei’s involvement in 2006, Walter had been the sole developer and maintainer

of the D language. Community contributions had come in at a steadily increasing rate. Accustomed

to running his own show, Walter was unprepared to cope with the demands of a growing commu-

nity. Over time, the project had grown too big for one person, and he struggled with delegating

responsibility for the myriad development tasks it required. Parts of it had become neglected, most

notably Phobos, the D runtime library. Frustration with its staleness [na Wrede 2006] and lack

of consistency [na Hay 2006] led three D enthusiasts to begin work on Tango, an alternative D

runtime library, in 2006 [na Kelly 2006].

The first public release of Tango was announced on Jan 31, 2007 [na Igesund 2007]. The announce-

ment was greeted with positive reactions, even from Walter [na Bright 2007d], so development

proceeded apace. Unfortunately, Phobos and Tango were incompatible [na BCS 2007; Hasemann

2007], creating an environment where developers were forced to choose one or the other for new D
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projects. This was a particularly difficult choice for library authors and became a source of friction

among D users [na Burrell 2008]. In April, 2007, one Tango supporter announced Tangobos, a

library that aimed to bridge the gap [na Richards 2007], but it failed to gain traction.

How the meeting on the sidelines of the 2007 conference came about is lost to the fog of time. It

is possible that it was suggested, if not brokered, by a D community member prior to the conference.

What is certain is that the Tango team extended an invitation to Walter and he accepted. The

Tango team were ideally hoping for Walter to agree to a merger with or wholesale replacement of

Phobos [na Igesund 2018], but Walter was adamantly opposed. He felt Phobos was and should

remain the official D runtime library. Somewhere in the middle of their practical and philosophical

differences, a compromise was waiting for the two sides to arrive.

What Walter could not have foreseen was that the community rift that had arisen over Tango

and Phobos was a minor hiccup compared to what was to come. The future language features

Walter and Andrei presented at the conference were just the tip of the iceberg. Radical changes

were coming to D, and the community response would be such that in 2016 Walter would write [na

Bright 2016]:

There are no plans for D3 at the moment. All plans for improvement are backwards

compatible as much as possible. D had its wrenching change with D1->D2, and it nearly

destroyed us.

The D language the conference attendees had come to know was quite different from the D

language of today. It was a one-man project, its history inextricably bound with Walter’s experience

in computer programming, developing compilers, supporting compilers, working on teams, and

even participating in aircraft design.

It all started with a computer game.

2 THE FORMATIVE YEARS
The D programming language first came to life in 1999, but it was in the late 70s that Walter,

while working toward a Mechanical Engineering degree at Caltech, stumbled on to the path that

ultimately led to the genesis of the language. In an era when students would spend hours playing

games in university computer labs across the country, Walter discovered he was more interested in

learning how to make games than in playing them.

Lacking any formal training in Computer Science, he taught himself BASIC in pursuit of his new

hobby. When programs began to exceed the memory available to BASIC, he switched to Fortran-10

(on Caltech’s PDP-10), allowing him to create much faster and larger programs. One such was the

commercially successful game Empire [na Bright 1979].

It was his desire to improve the performance of Empire that would launch Walter on a career of

compiler development and, ultimately, the creation of the D language. Before that came to pass, he

would learn some unexpected lessons as a mechanical engineer.

2.1 Boeing Commercial Airplane Company
Walter left Caltech in 1979 and landed at Boeing, where he would remain until 1982. He was put to

work on the design of the 757, with a focus on flight-critical systems such as the stabilizer trim

system. His time with the company introduced him to the concepts underpinning the development

of safe systems from unreliable parts—all systems can fail, and the failure of any one system must

not impair the safe flying of the airplane. Such safety is achieved through the implementation of

backups for all critical systems, along with mechanisms for the detection of faults and failover to

the backup [na Bright 2009b,c].
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At Boeing, 10,000 engineers could work together on a system as complicated as the 757 and com-

plete its design on schedule. One key enabler was modularity—each subsystem is compartmentalized

behind a very well-defined interface.

Conversations with flight control engineers revealed an understanding of what is and what is

not “intuitive” about user experience design. An intuitive design is one in which the user’s natural

reaction is the correct thing to do, with the caveat that one’s natural reaction is based on one’s

previous experience in similar situations. Intuitive design is difficult to determine in advance, and

airliner cockpit design is often the result of a cycle of mistake and accident analysis [na Vaillot

et al. 2003] followed by the implementation of improvements.

Another important lesson from airliner design is the attitude toward, and approach to, human

error. Many programming languages frame programmer error primarily as a matter of education.

Aviation design assumes that people (factory workers, pilots, and maintenance engineers), no

matter how careful and well trained, will make mistakes. That assumption guides the entire design

process toward creating artifacts that are easy to use correctly and difficult to use incorrectly.

For example, consider a square assembly that has four bolts holding it in place. One would

immediately think to design the four bolts in a square as well, for perfect symmetry. An unintended

consequence is that the assembly can be installed in four different orientations. If only one of those

is correct, relying on the mechanic to choose the right one introduces the risk of human error. The

solution is to break symmetry by offsetting one of the holes and/or by making one bolt hole a

different size than the others. Consequently, only one assembly is possible—the correct one. Many

other foolproof designs in the aerospace industry (such as color coding, asymmetric threading,

size/shape matching) render invalid assemblies or combinations impossible or visibly awkward.

These lessons would have a lasting impact on Walter, influencing his thoughts about the design

of existing programming languages and, two decades later, the design of D. But first, there was the

matter of improving the performance of Empire.

2.2 A Better C Compiler
The growing popularity of the IBM PC in the early 1980s offered Walter the opportunity to port

his Empire game to the platform, which in turn prompted him to examine the state of available

compilers. Implementations of Pascal [Wirth 1971] and Fortran in the early days of the IBM PC

were of poor quality. In contrast, early implementations of C, such as Telecom C, were quite useful

with the 16-bit memory model of IBM PC DOS. Still, Walter found the optimization characteristics

of existing C compiler implementations wanting, so he set out to write one that could do better.

In 1982, Walter left Boeing and created the Northwest Software company to sell his new C

compiler, which he branded Northwest C. Eager to make Empire faster and knowing what he

didn’t know, in 1984 he decided he should formally learn more about compiler implementation.

He signed up for a two-week Stanford course in compiler construction taught by John Hennessy,

Susan Graham, and Jeffrey Ullman. Of particular influence was the portion devoted to Data Flow

Analysis (DFA). The knowledge he gained provided insight into the kinds of optimizations a

compiler could be expected to perform, what was unreasonable for a compiler to do, and the kinds

of language features that contributed to and detracted from better optimization.

In April, 1985, Walter entered into a contract with the software company Datalight [naWikipedia

2010] and his compiler was rebranded as Datalight C. Eventually, he found the opportunity to apply

some of the insights he had derived from the compiler course. In 1987, he implemented DFA in the

Datalight C compiler and changed its name to Datalight Optimum C.

Data flow analysis was new for MS-DOS compilers, so Optimum C had a competitive edge. This

attracted the interest of a company called Zorland, which took over the contract of the compiler in

February, 1988. They began selling the compiler as Zorland C and retained Walter to maintain it.
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2.3 The C++ Compiler
Bjarne Stroustrup’s book The C++ Programming Language [Stroustrup 1985] had convinced Walter

in 1987 that the market was ripe for a native, high-performance C++ compiler on MS-DOS. The

extant compilers were marred by disadvantages. g++was in beta with an incomplete feature set and

was only available on Unix. cfront, which translated C++ to C, required an expensive third-party

C compiler to compile its output. It was also slow and unsuitable for the 16-bit memory model as it

was designed for a flat memory space, not the segmented world of MS-DOS where near and far

pointers were required. Walter began to implement support for C++ in Zorland C.

In 1988, in order to avoid legal issues with Borland, Zorland’s name was changed to Zortech.

In October, 1988, Zortech C++ 1.05 [na EDM/2 2017] became the first native C++ compiler for

DOS [PC-Week 1988a], and possibly the first native end-to-end C++ compiler released for any

platform. Featuring a new front end for the mature Zorland C back end, the overnight success of

Zortech C++ improved the landscape of DOS and Windows programming and the popularity of

C++ surged along with it [PC-Week 1988b].

In March, 1990, Zortech C++ 2.0 was released with support for Windows and OS/2. Version 3.0

was released in June, 1991. In August, Zortech was acquired by Symantec for $12.6 million [PC-Week

1991]. Symantec continued to market Zortech C++ until 1993 [na EDM/2 2017]. In September of

that year, the compiler was rebranded and released as Symantec C++ [na EDM/2 2018]. Walter

would remain the primary developer and maintainer of the Windows version of the compiler until

its final release.

Symantec’s primary focus with the C++ compiler was drop-in compatibility with Microsoft C++.

In the days before the C++ Standard, when compilers did not agree on how to interpret the rules of

the C++ language, maintaining compatibility consumed a great deal of Walter’s time. As part of that

effort, he personally provided support to Symantec C++ customers. Often, this took place outside

of the official Symantec tech support channels through CompuServe and Usenet. This was not a

normal practice, and users were frequently surprised to have their questions answered directly by

the compiler maintainer.

Walter also sometimes provided support via email. This was how he established a relationship

with Jan Knepper, who had first begun using the compiler before Symantec acquired it. The two

would remain in contact and Jan would later become an early, and important, contributor to the D

programming language.

2.4 The Java Compiler
Symantec decided to get into the Java compiler business and in May, 1996, released the beta version

of their Java development suite, Symantec Café. In 1997, Walter was asked to reimplement the

existing Sun Java compiler in C++ in order to speed up compilation.

A key component of Java is the garbage collector (GC). Walter had never implemented a GC.

To get up to speed, he turned to Garbage Collection: Algorithms for Automatic Dynamic Memory
Management [Jones 1996], the authoritative source on garbage collection at the time. This provided

him with the information he needed to implement a conventional mark/sweep collector. Afterward,

he was able to convert the implementation to a generational collector using an algorithm known

as mostly-copying collection [Bartlett 1989].

Prior to this experience, Walter had been convinced that garbage collection was a performance

killer to be avoided. Having acquired a more thorough understanding of the subject, he recognized

a number of potential benefits [na Bright 2001d] that would influence his thoughts on language

design going forward.

• Counterintuitively, and for numerous reasons, garbage-collected programs can be faster.

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 73. Publication date: June 2020.



Origins of the D Programming Language 73:7

• By reclaiming unused memory, garbage collectors are less prone to memory leaks, bringing

stability to long-running programs.

• Garbage-collected programs have fewer hard-to-find pointer bugs.

• Without the burden of manual memory management, garbage-collected programs can be

faster to develop and debug.

• For the same reason, garbage-collected programs can be smaller in size.

Walter would continue to maintain Symantec Café alongside Symantec C++ until he left the

company.

3 DIGITAL MARS
In 1999, Symantec exited the compiler business. With no C++ compiler to maintain, Walter retired

from the workforce. It wasn’t long before he grew bored. He was itching to work on a new project.

He had often reflected upon the strengths and weaknesses of C++ and the lessons that one could

derive from them in the design of a new language. He decided it was time to put those ideas into

practice. In October, 1999, he created a new company, Digital Mars. In November of that year, he

began work on the design and implementation of a new programming language that he calledMars.
To save time on the implementation of the compiler, he decided to use the back end of the C

and C++ compiler he had developed and maintained since the early 80’s, as it could already generate

binary output for the Windows platform. This required obtaining a license for the compiler from

Symantec, which he was able to do in April, 2000.

When former Symantec C++ customer Jan Knepper heard that Walter was preparing to relaunch

the compiler under a new brand, he decided to switch to the new release. He offered to host the

Digital Mars website and newsgroups. Walter accepted and, with the C++ compiler license in hand,

began offering the rebranded Digital Mars C++ as a free download from digitalmars.com [na Digital

Mars 1999] and selling a full development suite that included an IDE and other tools. (As of 2019,

Jan continues to host digitalmars.com along with dlang.org.)

3.1 A Brief Interlude
In the spring of 2000, Walter was invited by friend and colleague Eric Engstrom to join his new

startup, Chromium [na Orlowski 2001]. The company was under contract from Sun Microsystems

to develop a JavaScript implementation and Walter was asked to get it done. Despite the work he

was already doing in running a business and designing a programming language, Walter accepted.

This project provided a second opportunity for Walter to develop a garbage collector. Building

upon his previous experience, he chose to implement a conservative collector, as he was confident

he could produce a reliable one in short order. It would ultimately serve his own interests. He left

the company in the fall of 2001 when the script engine was complete, but was able to license it

from Chromium for his own use. The GC he developed for the JavaScript implementation would be

repurposed and employed in the runtime library of his new language.

3.2 From Mars to D
Walter began talking to acquaintances about Mars and looking for feedback. It wasn’t long before

they were jokingly referring to it as “D.” The name stuck, and on December 8, 2001, he released the

first prototype of DMD, the Digital Mars D compiler [na Bright 2001a].

The draft specification of the D Programming Language [na Bright 2001b] opens with the

following paragraphs.

The software industry has come a long way since the C language was invented. Many

new concepts were added to the language with C++, but backwards compatibility with
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C was maintained. Additionally, C++ was very much designed by committee, and hence

is loaded with multiple overlapping ways of doing the same thing, and compromises

for political purposes. C++ has become so complicated that nobody really understands

it, and no C++ compiler exists that properly implements 100% of the spec (even if

someone did understand 100% of the spec).

Software has grown thousands of times more complex. What is needed is for the

language to be forward looking to solve today’s and future software programming

needs, not looking backwards to bring along code written 30 years ago. For legacy code

written 30 years ago, they can be ably compiled by existing C and C++ compilers.

A new language needs to be developed that takes the best features and capabilities of

C++, adds in modern features that are impractical in C++, and puts it all in a package

that is easy for compiler writers to implement, and which enables compilers to easily

generate optimized code.

The initial design of D was informed by the lessons learned fromWalter’s careers as a mechanical

engineer and compiler writer, and those derived from his exposure to different programming

languages. Having written and supported professional compilers for C, C++, Java, and JavaScript

for two decades, he felt he was in a good position to judge their strengths and weaknesses and

what could be improved upon. D would retain the strengths of its ancestors, avoid the problems

that caused bugs and awkward code, and add new capabilities that would make programming more

pleasant and more reliable. It was to be a general purpose, native-code-generating language for a

broad spectrum of uses, fit for systems programming and application programming.

D was intended for more experienced programmers who wanted the most out of a language

and were willing to commit some time to learning it. This would be facilitated by maintaining a

syntax with which experienced programmers would be familiar from C, C++, and Java. Though D

was not initially considered suitable for beginner or casual programmers, it would become more

amenable to them over time with the development of comprehensive documentation and tutorials

by a thriving community of D users.

3.3 You Can’t Spell “Compatibility” Without ‘C’
One of the earliest design decisions that Walter made about D was that it would be easy to use

with software written in C. Many widely-used libraries are implemented in C or have a C interface.

He wanted to provide an easy path for established software companies to adopt the D language. A

straightforward approach was to guarantee that users of D could immediately take advantage of

any C library their project required without the need to reimplement it in D.

To facilitate this goal, D maintains interface compatibility with C, which allows C headers to be

translated to D modules so that C symbols can be used in D code. D is also ABI-compatible with C

which means that the binary output of C compilers can be combined with the binary output of a D

compiler in a single executable.

Going further, a fundamental design goal is that a syntactical construction should have the same

semantics in D as in C, such as the integer promotion rules, or fail to compile. This allows for the

by-rote conversion of C code to D. If it compiles, it should run with the same semantics; if not, it

should produce a visible (and hopefully easily corrected) compile-time error. In practice, this has

not always been desirable. For example, in the declaration of multiple pointers on a single line:

int* p1, p2. This creates two pointers to int in D, whereas in C only p1 would be a pointer, and

is consistent with other D declarations in that the type, in this case int*, is always on the left.

Negative influences that were avoided in D include the necessity for forward declarations, the

decay of arrays to pointers when passed to functions [na Bright 2009a], uninitialized variables,
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and implicit narrowing conversions (assigning an integer value of one type to a variable of a

smaller-sized type without a cast).

Notably absent from D is a C-style preprocessor. In C, a text macro system was necessary in order

to add metaprogramming features while keeping the compiler small. Such technology constraints

were no longer a problem when work began on D, and the functionality of the preprocessor is

covered by several different features in D. Some, such as modules and version declarations, were in

place from the beginning, others would be added over time.

3.3.1 Arrays and Slices. Though Walter would have preferred to abandon support for C-style

pointers, he found it necessary to support them. Without pointers, the goal of facilitating D’s

adoption would be severely hampered; users would be unable to make use of any pointer-heavy C

API or to easily translate C source to D. In contrast, Walter decided D would not support some C++

notions, such as rvalue references, even though it would make connecting with C++ code more

difficult.

The need to support pointers did not mean their use was encouraged. It would instead be

discouraged in circumstances where code safety may be compromised. The prime example is the

use of pointers to access contiguous arrays; because there is no array extent information embedded

in pointers, that information must be maintained separately in user code, a circumstance that

collective experience has shown is prone to human error. Tools for modular bounds checking

commonly require function signatures to be annotated with information denoting the association

between pointer parameters and the lengths of the arrays they represent, or the relationships

among pointer parameters [Microsoft 2015]. C++ iterators, being a generalization of pointers, have

inherited some of this lack of safety [Pataki et al. 2011].

To address this issue, D arrays would be fat pointers, an encapsulated pair of a pointer to a

contiguous memory block and a field to track the number of elements residing in memory starting

at that address. With this construct, D arrays could offer bounds-checked random access and

subslicing (reducing the extent of the slice) “for free,” with no complex code instrumentation or

type-checking cleverness. In contrast, C code using pointer/length or pointer/pointer pairs to

represent arrays requires conventions to convey how pair elements are related and relies on the

programmer to combine them correctly.

Again for compatibility, C’s postfix array declaration syntax (e.g., int a[]) would be retained,

but the D prefix syntax int[] a would be preferred. The brackets, ‘[]’, are considered part of the

type, hence conceptually they should remain together. (For the same reason, the D convention for

pointer declarations discourages spaces between the element type and the star.)

To the D programmer, an array slice is no different than a dynamic array. They support the same

operations, they each have ptr and length properties, and can be passed as an argument to any

function that accepts dynamic arrays. The only difference is a semantic one: a slice is produced

from an existing dynamic or static array. A slice shares the same backing memory store as its

source array until an element is appended to the slice, in which case new memory is allocated and

the contents of the original store are copied over. The similarity between dynamic arrays and slices

has led to inconsistent usage of the two terms, with some users maintaining the distinction and

others referring to both as slices.

Disagreement over jargon aside, one would be hard pressed to uncover a D programmer com-

plaining about slices as a language feature. Originally suggested by Jan Knepper, they would

become a primary tool in the D toolbox. Projects such as the vibe.d web application framework [na

Rejected Software 2012b] would come to rely upon them for fast string parsing, and slices would

provide a convenient base upon which ranges and the std.algorithm API could be implemented

in D2, which was a complete overhaul of the language that began in 2007 [na Bright 2007b]. The
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D2 standard library would also introduce new mechanisms to enhance the performance of slices

by giving the programmer more control over the usage of a slice’s backing memory store [na

Schveighoffer 2011].

3.3.2 Modules. To replace the usage of C headers and #include directives, each D source file is a

module that can be imported by other modules. By default, a D module takes the name of its source

file without the .d extension, but best practice dictates including a module declaration, of the form

module modulename;

at the top of every source file. There is no need to separate function and type declarations from

their definitions. By default, symbols in a module are publicly accessible, but can be made internal

via the private keyword. This is analogous to the usage of static in C, but given that D supports

access modifiers in class and struct definitions, where static has nothing to do with access

control, it made sense to use private at module scope instead of static.
Modules were in place in the initial alpha release of DMD and were followed by packages with

the release of DMD 0.15 on Jan 20, 2002 [na Digital Mars 2002b]. Whereas modules correspond to

files in the file system, packages correspond to directories. Packages may be nested by including

each package name in the module declaration:

module packageone.packagetwo.modulename;

This complete module name is used with the import statement to make the symbols from one

module accessible to another module.

Any symbol declared in a module is prefixed with the name of the module and any package

hierarchy to which the module belongs to form the symbol’s Fully-Qualified Name (FQN) in the

form packagename.modulename.symbolName. The FQN can be used when symbols from two or

more imported modules conflict. Over time, the import statement would be enhanced to support

several variations:

// Alias std.stdio to io, so that the FQN of symbol names in that module

// become io.symbolName.

import io = std.stdio;

// Require the fully qualified name to be used on symbols from std.string.

static import std.string;

// Selectively import the toInt function template from std.conv.

import std.conv : toInt;

void main() {

// getExt and getName are only visible and accessible in this function

import std.path : getExt, getName;

{

// read is only visible and accessible in this block

import std.file : read;

}

}
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3.3.3 Conditional Compilation. Walter’s dislike of the C preprocessor did not extend to all of the

purposes for which it was put to use. One such usage that C and C++ programmers had come to

rely on was the employment of #if and friends to conditionally include certain blocks of code in,

or exclude them from, compilation. The absence of a feature in D that could achieve the same effect

would significantly complicate porting and interacting with some preprocessor-heavy existing C

codebases. To that end, the version conditional became part of the initial feature set.

Version conditionals accept an identifier and are allowed in only one form:

version (identifier) {

...

} else {

...

}

(The else branch is optional.) One key detail is the braces ‘{’ and ‘}’ do not introduce scopes
here; they are used as punctuation only. The introduction of scopes would have hamstrung usage

of version by hiding all declarations within the braces from the rest of the code.

The identifier can be set on the command line or programmatically with the syntax:

version = identifier;

The compiler commonly predefines version identifiers associated with the operating system,

target processor, or pointer width. The namespace of versions is distinct from all other identifier

namespaces. Setting a version after it has been queried is not allowed. Combining versions in

Boolean expressions as in version(a || b) is not allowed, although that would not be technically

difficult. The limitations are intentional and aim at keeping version simple and coarse-grained;

decades of experience with the “#ifdef hell” [Feigenspan et al. 2013; Le et al. 2011; Medeiros et al.

2018; Siegmund et al. 2012] of C and C++ provided ample motivation for a highly structured system

driven exclusively by named tags. Experience with version provides good empirical evidence that

the feature provides a good balance of expressiveness and maintainability.

Conversations with Eric Engstrom led to amore specific sort of version conditional. Hementioned

that different groups had frequently invented their own standard for handling debug builds with the

C preprocessor. This presented difficulties in sharing code. The same could happen in D if different

groups were to use different version identifiers for their debug builds. If the language provided a

standard instead, groups might be more likely to use it rather than inventing their own. This line

of thought resulted in the debug conditional being another inaugural feature of the language.

debug {

// Only compiled when the -debug flag is given to the compiler.

}

version and debug were the first members in what would grow to become a comprehensive set

of compile-time features for generic and generative programming.

3.4 Broader Influences
D acquired C++’s value semantics with user-defined copy semantics, though with a clear distinction

drawn between value types (struct) and the Java-inspired reference types (class). Other borrowed
ideas include efficient vtable-driven virtual dispatch of virtual functions, protection levels, and

exceptions.

Walter’s experience with Symantec Café had revealed that OOP could be far simpler than the C++

model. This led him to shun multiple inheritance of implementation because it has little benefit
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and adds undue complexity in implementation. He opted instead for Java-style single inheritance

of implementation and multiple inheritance of interface. The implicit dereferencing of object

references and the use of Unicode strings were also directly inspired by Java.

In contrast to the designers of Java, Walter did not see operator overloading as something to be

avoided. When used appropriately, it was a beneficial feature. Inappropriate use generally means

overloading an operator to carry out an operation that is counter to the commonly understood

meaning of the operator’s symbol, such as overloading the ‘+’ operator to perform concatenation

rather than addition. (D opted for the ‘~’ operator for array concatenation and ‘~=’ for appending).
D would eschew the C++ approach of incorporating the operator’s symbol in the function name

and use the (abbreviated where appropriate) name of the operator instead: opAdd, opMul, opAppend,
etc. The hope was that the operator names would mentally reinforce the intended usage of the

operator. It’s unknown whether the approach had the desired effect, but it was largely abandoned

in D2 for a more flexible template-based implementation using a different naming scheme.

C++ features Walter planned to avoid included namespaces and templates. Namespaces as a

distinct language feature were unnecessary in a language featuring modules and packages as part

of a symbol’s fully-qualified name. He initially objected to templates on the grounds that they

added disproportionate complexity to the front end, they could lead to overly complex user code,

and, as he had heard many C++ users complain, they had a syntax that was difficult to understand.

He would later be convinced to change his mind.

3.4.1 Private Friends. One D feature that some C++ and Java programmers find surprising is

that private members in struct and class declarations are “private to the module” rather than

“private to the type.” In other words, any private symbol declared anywhere in a module is accessible

anywhere else in the same module. The module, not the class, is the unit of encapsulation.

// Top-level private symbols are accessible only within the module,

// and this is never a surprise.

private const int windowWidth = 1024;

private const int windowHeight = 768;

class Window {

// Private class members are accessible elsewhere in the

// the same module, which can be surprising

private this(int width, int height) {

...

}

}

Window createWindow(int width = windowWidth, int height = windowHeight) {

// Has access to private constructor of Window

return new Window(width, height);

}

This behavior was implemented as an alternative to the C++ friend feature. According to

Walter [na Bright 2018]:

C++ friend is a hackish thing, with consequences in appearance, name lookup and

scope. Being able to declare a “friend” that is somewhere in some other file runs against

notions of encapsulation.
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In the D forums, there have been a few long debates over the years between D users who find the

feature convenient and those who expect private to behave as it does in C++ and Java. The thread

from which the above quote was taken serves as a good example [na Alex 2018]. Such criticism

has never been widespread and there are no plans to change the behavior of private.
D’s version of protected is allowed only in class and interface declarations, as only those

entities support inheritance. As in other object-oriented languages, it makes class members ac-

cessible to subclasses. Unlike Java’s protected, it does not grant access at package level (D has a

fourth access modifier, package, for that), but it does make members accessible in the same module.

For reasons unknown, this behavior has not generated the same level of controversy as that of

private.

3.4.2 Automatic Memory Management. Walter’s experience implementing a garbage collector

for Symantec’s Java implementation had convinced him of the benefits of garbage collection and

motivated him to make it an integral part of D’s initial design [na Bright 2002b]. Certain language

features, such as the new operator and array concatenation, were implemented with the assumption

that a GC is always present. He was cognizant of the fact that his enthusiasm for garbage collection

was not widely shared and that some people would need convincing that a GC could have a

place in a systems programming language. He iterated the benefits as he saw them, along with

some downsides, in an article on the Digital Mars website [na Bright 2001d] aimed at persuading

potential D users that a GC in a systems programming language was not a deficiency.

Garbage collection is not a mandatory feature in D. If one does not allocate memory via new,
directly call one of the GC’s allocation functions, or make use of a language feature that allocates

from the GC memory pool, then no scanning of memory or collecting of garbage will ever take

place. Programmers have full access to the C standard library’s memory allocation API and other

third-party allocators can be used if preferred. Programs may even mix GC-managed memory with

manual memory management. The D runtime provides an API to add unmanaged memory blocks

to the list of blocks it scans and to “pin” GC-allocated memory so that it is never collected until it

is unpinned. The latter feature makes interaction with C libraries less cumbersome.

Garbage collection in D would become a perennial point of criticism, often cited as a reason to

avoid the language. Though Walter implemented an API to disable and enable the GC at will and

to force collections to occur, the option to remove it completely would become a frequent feature

request. Walter was unconvinced that the benefits of implementing such a feature would justify

the costs. Certain language features would be unavailable in the absence of a GC, and the standard

library would need to be refactored to accommodate programs that use the GC as well as those

that completely remove it. Eventually, as the language evolved and made inroads into industries

where high performance was critical and the aversion to garbage collection strong, Walter would

be persuaded that a “no GC” option could be a boon to D’s adoption. The @nogc function attribute

would be incorporated into D2, along with runtime options to assist in profiling GC usage and

performance in a D program.

3.4.3 Unit Testing. Walter understood the value of unit tests, but he had seen firsthand that

depending upon third-party tools and frameworks to implement them was a recipe for outdated

and missing tests. This inspired him to add support for unit testing as a feature of the language.

The unittest keyword introduces a compound statement at module level, or inside a class or

struct definition. Passing a dedicated command-line argument during compilation instructs the

compiler to build and run unit tests just before running the application itself. For example:

void someFunction() { ... }
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unittest {

// Unit tests for someFunction() go here

}

class Widget {

void transmogrify() { ... }

unittest {

// Unit tests for Widget.transmogrify() go here

}

...

}

Later, the addition of templates to the language would raise the question of how to handle unit

tests defined inside generic classes. The answer is that they are instantiated and executed for each

instantiation. This is onerous with library-based approaches, but it’s part of the natural workflow

in D:

class Generic(T) {

void method() { ... }

unittest {

// One definition and execution per instantiation of Generic

}

...

}

The compiler front end instruments the function body’s code (in unit testing mode) such that

after the unit tests are run, a code coverage report is automatically generated. In conjunction with

simple scripting, arrangements can be made to a build system such that code coverage percentage

does not decrease as functionality is added.

Placing the unit tests for a function adjacent to its body makes it natural to develop them in

concert with the function in a test-driven manner rather than as an afterthought. More importantly,

the simplicity of the approach lowers the barrier of entry to unit testing [na Davis 2014], as can

be seen by examining the source code of many open-source D projects [na Rejected Software

2012a]. However, some who are used to or require more complex testing find the implementation

too simple [na Kröplin 2017].

3.5 The Engineering Influence
The insights Walter derived from his time as a Boeing engineer influenced a number of D features.

The behavior of language features should not defy user expectations, and the language syntax

should follow the principle that invalid assemblies should be impossible. In other words, make it

easy for the user to do the right thing and difficult to do the wrong one.

This is easier said than done. Programmers come to D from a variety of backgrounds that

influence their expectations, and one person designing a language alone is bound to overlook the

potential for error-preventing syntax in some places. The effort to reduce the potential for errors

would be ongoing. Still, there were some obvious, low-hanging items that could be taken care of

from the beginning.
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3.5.1 Integer Literal Suffixes. The lower case ‘l’ cannot be used as an integer literal suffix (a

character appended to an integer literal to change its type from int to, in this case, long), due
to potential confusion with the digit ‘1’. Only the uppercase ‘L’ is allowed. (Also found in the JSF

Coding Standards [na Lockheed Martin 2005].)

3.5.2 Implicit Variable Declaration. In languages like JavaScript, variables need not be explicitly

declared before they may be used. Instead, the initial usage of a variable via the assignment of

a value, as in number = 2, creates the variable. This can be problematic, as a typo in subsequent

usage of the variable will cause another variable to be created with the misspelled name. D does

not support implicit variable declarations, requiring all variables to be explicitly declared.

3.5.3 Shadowing. Local declarations that shadow other local declarations are not allowed:

void foo(int i) {int i = 3; /* error, shadows parameter 'i' */}

Global symbols are supported for C compatibility (they can also be convenient). The introduction

of a global should not suddenly render existing code invalid, so the shadowing of globals is allowed

for overriding modularity concerns.

3.5.4 Underscores in Numeric Literals. Underscores can be used in numeric literals to make them

easier for human eyes to interpret (a feature borrowed from Ada):

2135555565 // difficult to read

2_135_555_565 // separated at thousands

213_555_5565 // looks like a phone number

1234_5678_9000_7777 // looks like a credit card number

3.5.5 Empty Statements. A solitary ‘;’ as an empty statement is illegal—‘{’ and ‘}’ must be used

instead:

if (i > 10); // oops!

sum += i;

3.5.6 Confusing Behavior. Confusing forms allowed in C, such as a < b < c, are illegal:

((a < b) ? 1 : 0) < c // C rules (motivated by uniformity)

a < b && b < c // Python rules (motivated by math notation)

The C rules are motivated by consistency with the other parts of the language; all operators are

associative, and most other binary operators are left associative. That consistency leads in this case

to a mostly useless composition rule. Python addressed the matter by taking inspiration from the

usual math semantics. Walter aimed at avoiding silently changing the semantics of code ported

or pasted from C. The solution adopted was simple, robust, and obvious in hindsight: comparison

operators are not associative in D’s grammar. Confusing uses such as a < b < c are syntactically
illegal and produce a compiler error.

3.6 Early Mistakes
Although he had the design and implementation details covered, Walter missed two key insights

about the development process that he would come to regret. There were also two language features

that misfired and would later be removed.
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3.6.1 Process. In hindsight, the failure to use a version control system from the very beginning

was a major mistake. Version control is easy to use and has many advantages, one of which is the

maintenance of a complete history of a project’s development. A consequence is that the early

history of the development of the D compiler was not recorded.

Another mistake was the failure to recognize that the world had changed with respect to the

value of Open Source. Walter initially opted to stick with the old closed source model which had

been successful for years in the software world at large. It would later become clear that D was

going to grow and succeed only if it was Open Source.

3.6.2 Features. An uncommon numeric type incorporated into D, which seemed like a natural

idea at the time, was the bit. When a bool type is a full byte in size, with its two possible values,

seven bits are wasted. That raises the question of what happens if any of the other seven bits aren’t

zero. A bit type could represent a Boolean without the waste or the ambiguity.

In time, this proved to be a misguided feature. Because individual bits don’t have an address,

then a bit* must be a special pointer that contains both the address of the byte in which the bit is

contained and the bit number. The presence of multiple pointer types means special-casing bit*
would filter through every type in the type system, a cost that far outweighs the advantages of the

type. bit would be removed from the language and a byte-sized bool added in 2006 [na Digital

Mars 2006].

Another feature that never found its purpose was the ability to embed D code directly into HTML.

The idea was that one file could contain both the documentation for the code and the code itself,

literate programming style [Knuth 1984]. The documentation could then be displayed simply by

opening the file directly in a browser without any need for an intermediate generation step.

It never caught on. Quite likely, part of the reason is that HTML is ugly to look at and is only

a marginally human-readable format. A major part is that D programmers just never accepted

the paradigm of code embedded in the documentation. Walter never used it himself. The reverse,

documentation embedded in code, was an established paradigm that did find success in the D

community in the form of Ddoc comments. D-in-HTML remained part of the language through

the final release of the D1 compiler [na Digital Mars 2012a], but was removed from D2 [na Bright

2008].

4 LEAVING THE NEST (2001–2003)
Walter was initially the sole developer for both the creation and implementation of D. He had no

staff to pay and equipment costs were minimal. He made no use of paid advertising. Excluding the

licensing deal with Symantec, his out-of-pocket expenses were likely less than $10,000 over the

first fifteen years of the language’s life.

Releases of the compiler were frequent throughout 2001 and 2002, the last being 0.50 on No-

vember 20, 2002. This series of releases solidified the initial language features through bug fixes

and behavioral tweaks, enhanced the runtime library, and streamlined the processes of building

and using the compiler. From that point, stabilization of the core features was a major emphasis of

Walter’s efforts, but that didn’t prevent the introduction of new features that were never considered

in the original design. When he was opposed to adding a specific feature, he could sometimes be

persuaded to change his mind. His approach to designing D at this point could be boiled down to

“try it and see if it works.”
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4.1 Communal Roots
As Walter’s focus moved away from C++ toward D, Jan Knepper continued to provide sup-

port for web hosting and the newsgroups. The digitalmars.D newsgroup was launched on Au-

gust 12, 2001 [na Knepper 2001], the date that marks the birth of the D programming language

community. On the same day, Walter announced the availability of the D Programming Language

Specification [na Bright 2001c].

The first comment from someone investigating the new language appeared the day after the

newsgroup’s launch [na Frohne 2001], and activity would increase over the next few years as users

left feedback, asked questions, requested features, and reported issues. When users asked how they

could help, Walter encouraged them to spread the word about D by “putting up a personal web

page” and mentioning the language “in topical newsgroup posts” [na Bright 2002d]. He followed

his own advice and published an article, “The D Programming Language”, at Dr. Dobb’s Journal in

February, 2002 [na Bright 2002a]. In it, he presented D as an alternative to C++ and explained the

primary motivation behind the language:

D intentionally looks very much like C and C++. D eliminates features that make

programs arbitrarily difficult to write, debug, test, and maintain, while adding features

that make it easier to do such tasks. Features that have been supplanted by newer

ones, but are retained for backward compatibility with legacy code, are scrapped.

D’s emphasis is on simple, understandable, and powerful syntax. Contorted syntax

necessary to fit in with the old legacy structure of C has been jettisoned.

Eventually, Walter began accepting contributions in the form of patches. He was the initial

author of Phobos, the D runtime library, which morphed into much more of a community effort.

Throughout this period of increasing contributions, he remained the sole designer and implementer

of the core language.

As the list of contributors grew [na dlang.org 2018], so too did the number of challenges that

Walter had not anticipated. The newsgroup was the primary means of communication, but he found

a steadily increasing number of emails in his inbox. Keeping up with communication increasingly

took time away from working on D. Since everyone was a volunteer, he had no authority to order

anyone to do anything. People worked on what they wanted, when they wanted, and appeared and

disappeared as they chose. Often, volunteers would ask him what they should work on. He would

provide a list and the volunteers would then choose to work on something else. This often meant

that he was left doing work that no one else wanted to do.

Without the backing of a major organization, there were no marketing, community relations,

or training personnel. There were no official IDE plugins, GUI libraries, or build systems. The

project had no schedule or deadline. Task selection was governed by an informal assessment of

need divided by an estimate of the time required to implement. The difficulties of developing the

first version from front to back had been mitigated by licensing the C++ compiler from Symantec.

This provided a foundation consisting of a professional code optimizer, code generator, linker, and

related tools, all of which meant that DMD was initially limited to the 32-bit Windows platform.

The immediate necessities implementation-wise had been the front end for D and the initial runtime

library. The D compiler was developed with C++, but that did not have any impact on the initial

design of the language.

4.2 Templates
As more programmers downloaded DMD and put the language through its paces, some of them

began posting in the newsgroup requesting that Walter add new features to the language. Though

he was not averse to adding new features, he wasn’t interested in adding any features he had
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already considered and rejected when he had drafted the language specification. His position on

such requests is seen in a response he gave [na Bright 2001e] to someone arguing in favor of

multiple inheritance who posited that the existence of a feature did not mean everyone had to use

it.

The counterargument (and I’ve discussed this at length with my colleagues) is that C++

gives you a dozen ways and styles to do X. Programmers tend to develop specific styles

and do things in certain ways. This leads to one programmer’s use of C++ to be radically

different than another’s, almost to the point where they are different languages. C++

is a huge language, and C++ programmers tend to learn particular “islands” in the

language and not be too familiar with the rest of it.

Hence one idea behind D is to *reduce* the number of ways X can be accomplished, and

reduce the balkanization of programmer expertise. Then, one programmer’s coding

style will look more like another’s, with the intended result that legacy D code will be

more maintainable.

The conversation had veered off the original topic of that newsgroup thread, which was titled

“Templates.” It was one of several threads in which templates were requested and debated through-

out 2001 and 2002. The discussions eventually persuaded Walter that he needed to reconsider his

opposition to adding templates to D. He still didn’t intend to implement C++ style templates and

wanted to find an alternative. It wasn’t long before he hit on a solution.

His key insight was that the compile-time parameters of a template declaration could be seen

similarly to the run-time parameters of a function declaration. From that perspective, there was no

need for a special syntax for a template’s parameter list—the same parentheses used for a function’s

parameter list could pull double duty. As he saw it, it made templates much easier to understand.

He has likened it to the experience of a colleague who once moonlighted as a remedial algebra

teacher: if she asked her students to “solve for x”, they would freeze up and fail to answer, but when

she removed the ‘x’ and instead asked them to “fill in the blank”, she would have the answer before

she could blink.

A D implementation of the min function template looks like:

template min(T) {

T min(T a, T b) {

return b < a ? b : a;

}

}

In modern D parlance, this an eponymous template, a template which contains one member

that shares the template’s name. Normally, template members are accessed using the same dot

syntax used for aggregate types, e.g., min.min(10,20). Eponymous templates allow the eponymous

member to be accessed without the prefix, so that in this case the function can be called directly as

min(10, 20). In D2, eponymous template declarations would also be allowed a special shorthand

syntax that eliminates the need for the template keyword:

T min(T)(T a, T b) {

return b < a ? b : a;

}

Multiple type and function declarations can appear inside a template declaration. The shorthand

syntax for eponymous templates is not restricted to functions, but may be applied to any eponymous

declaration inside the template:
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template Point(T)

struct Point {

T x, y;

}

}

// No need to use Point.Point!float

alias Pointf = Point!float;

As seen in the declaration of Pointf, Walter also implemented a clean syntax for template

instantiation. He selected the character ‘!’ as the template instantiation operator. It is paired with

the template argument list to simplify the back-end implementation, as in min!(int)(a, b), and
is required when type inference is not possible. When the template is instantiated with only one

parameter, as in this case, the parentheses may be omitted: min!int(a, b). When type inference

is possible, again as in this case, the parameter list may be omitted: min(a, b).
Templates made their debut on September 8, 2002, in DMD 0.40 [na Digital Mars 2002c]. Over

the years, they have been improved and enhanced with features such as default parameters, alias

parameters, tuple parameters, and in D2, template constraints.

4.3 An Ergonomic Loop
The proposal for a foreach loop first appeared in the newsgroup in May, 2002 [na Yates 2002].

Walter’s response (and one of his earliest mentions of a future D2):

It’s a good thought and many people have suggested it. It won’t be in version 1, though,

but maybe version 2.

By October, he was “thinking about adding it in” [na Bright 2002c]. With the release of D 0.71

on September 3, 2003 [na Digital Mars 2003b], the foreach statement officially became part of the

language. It was his engineering background and the lesson of safety ergonomics, that incorrect

configurations (or syntax in this case) should be impossible, that led him to change his mind.

D’s support for the traditional for loop is only slightly less error prone than C’s, as demonstrated

here:

bool find(int needle, int[] haystack) {

for(int i=0; i<=haystack.length; i++) {

if(haystack[i] == needle)

return true;

}

return false;

}

The first mistake is that i is of type int when it should be size_t for a proper comparison

with haystack.length. This is a common mistake with for loops that D’s fat pointer arrays alone
cannot prevent. The second mistake, perhaps less common but a subtle source of bugs, is the use of

the wrong comparison operator: ‘<=’ instead of ‘<’. D’s default bounds checking on array accesses

can catch this at runtime, but when bounds checking is disabled the behavior is just as undefined

as it is in C.

The introduction of foreach brought with it an opportunity for a new syntax which could

eliminate the possibility for such errors. The final implementation was something that was distinct

from the standard for loop, yet simple and familiar.
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bool find(int needle, int[] haystack) {

foreach(index, e; haystack) {

if(e == needle)

return true;

}

return false;

}

Here, index is an optional value (it may be omitted) assigned the array index of the element in

the current iteration. By omitting the type, it is size_t by default. e is the element at the current

array index, its type inferred from the array declaration. This employs the compiler’s knowledge

about arrays, that they are fat pointers which know their length, to eliminate two common for
loop errors. The language would later gain a complementary foreach_reverse statement.

In D2, foreach would be expanded to iterate over ranges, sparing the programmer the need to

do so manually via the D2 range API.

4.4 The is Operator
Over the years, and before a formal process for introducing language features was established [na

Parker 2016], Walter occasionally surprised D users by implementing requests for minor language

changes without any indication of his plans beforehand. The is operator serves as a demonstrative

example.

Operators for identity (‘===’/‘!==’) and equivalence (‘==’/‘!=’) were part of D’s early feature

set. When the latter was used on struct or class instances, it was rewritten into a call to an

opEquals method. This would always work for a struct, but would cause an access violation

(thereby terminating the program) when used with a null class reference.

The identity operator was intended to be used when comparing class references. Unfortunately,

the two operators sometimes caused confusion, a point raised in the newsgroup by MatthewWilson

in March of 2003 [naWilson 2003b]:

If I remember, last year there was debate on using == and === operators for representing

equivalence and identity. Is this correct? Still the case? If so, which one is which?

In a subsequent discussion [na Wilson 2003c], Walter did not appear inclined to accept that

there was a problem. The behavior of both ‘==’ and ‘===’ was well documented and, according to

his view of software development, an access violation was not a bad thing.

In October, Matthew was at it again [na Wilson 2003a].

Please, please, please, please, please can we get rid of === and !==, and replace them

with something that will not (or at least, less easily) facilitate undetectable errors

entering code? My suggestion is "is" and "is not", but I’m not particularly stuck on that.

Anything that will avoid these errors.

Walter did not respond in that thread but he was thinking about it. In the end, he decided the

feature was easier to add than to fight. The release of DMD 0.76 on November, 21[na Digital Mars

2003c], included a new is operator with behavior identical to ‘===’. When a commenter expressed

excitement for the new operator, Walter replied, “See, I do read this ng <g>.”[na Bright 2003]

The suggested ‘is not’ was never implemented. Instead, only !(a is b) was supported. The is
operator subsequently became the recommended means of testing identity. ‘===’ and ‘!===’ would
be deprecated in Jun of 2005 [na Digital Mars 2005b] when support for !is was added.
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5 GROWING PAINS (2004–2006)
By 2004, D was still a long way from becoming more than an obscure language, but there were

signs that it was starting to gain steam. One such was the growth of activity in the D newsgroup,

where a total of 734 topics posted in 2002 had more than doubled to 1,532 in 2003 [na Digital Mars

2002a, 2003a].

In April of 2004, in response to the increased activity and as a future-proofing measure, Walter

launched two new newsgroups under a common namespace. digitalmars.D was intended as a re-

placement for the existing D group for general discussion of the language and digitalmars.D.bugs [na

Bright 2004e] for bug reports. In March of 2005, he created digitalmars.D.announce and digital-

mars.D.learn [na Bright 2005a] to accommodate a further increase in activity and topic variety.

Also in April, Walter announced in the new newsgroup that he had ported his old game, Empire,

to D [na Bright 2004c].

Every language needs a game written in it, and now Empire is in D (at least version

0.86). You can pick it up at www.classicempire.com. Warning: Empire has a long track

record of being an enormous and unproductive time waster. It’s been rumored to me

to have caused many students to flunk out of college, job loss, and was even reputed to

have instigated a divorce. Start playing it at your own risk.

The ported code was still close to the original C, demonstrating that C code could be ported to D

with minimal effort and then D-specific features could be added in as desired.

Walter was also busy implementing a long-requested language feature.

5.1 Template Mixins
In August of 2001, D user Richard Krehbiel published a newsgroup post titled “Macros” [na Krehbiel

2001]. It began with the question, “Okay, why is it that everybody thinks the C preprocessor is

terrible and needs to be avoided?”

In response, Tim Sweeney said, “Because it’s terrible and needs to be avoided, of course!” [na

Sweeney 2001] He went on to list five ways in which preprocessor macros had been used in the

C++ codebase of the first Unreal game.

1. To exposemetaclass information (i.e. class names, default constructors that a serializer

can call) – like MFC’s techniques. All of this code would be unnecessary if the language

supported classes as first-class objects (i.e. you can pass around a classref* which

“represent” the class and exposes its static functions), static virtual functions, and static

constructors.

2. To comment out large blocks of code. Would be unnecessary if /*...*/ comments could

be nested.

3. To implement debug-specific code. This is actually unnecessary, a bad old habbit

[sic]. We would be just as well off having a global constant debug=0 or 1, and having

if(debug) ... instead of #if debug.

4. To implement platform-specific headers. Only necessary because headers are neces-

sary.

5. To perform template-style tricks. If the language has a great facility for type depen-

dency (whether like C++ templates, or more general like Haskell), all of these things

would be unnecessary. Even C++ templates aren’t complete enough, i.e. there are no

template typedefs (true type synonyms), and most production compilers have bizarre

template bugs limiting what you can do.

He ended by saying that if C++ had built-in support for all of the above, then “the Unreal code

would be simpler and cleaner.”
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By 2004, D had features that matched four of the listed use cases: nested comments, debug version

blocks, modules, and templates (though they weren’t yet as powerful as the templates Tim was

envisioning). There was no D feature that supported the first use case.

In October, 2002, Patrick Down started a newsgroup thread titled "DMixins". The idea he proposed

was a feature called “mixins” as an extension to D’s templates [na Down 2002]:

You will find various explanations of mixins on the web but to me they are just

aggregation with a twist. The twist is that aggregated object has some access to the

object in which it is aggregated into.

I think that with D’s templates could be extended to cover this feature.

He then went on to propose a syntax for such a feature. The proposal received very little feedback

and none from Walter.

Over a year later, in December, 2003, Mikkel Jørgensen emailed Walter his own proposal on

mixins. This proposal differed from Patrick’s in that it revolved around the idea that a mixin
definition would be analogous to a class or interface rather than a template. Walter’s response:

I think mixins are a good idea. Why not post this to the D newsgroup? There are some

pretty smart people there to comment on it.

Mikkel followed his advice [na Jørgensen 2003]. In the discussion thread, Patrick gave the

proposal his support, as did other users who left feedback, including Matthew Wilson. He and

Walter began discussing the idea via email, where Matthew presented his own proposal similar to

Mikkel’s.

Walter came to see mixins in the same light as Patrick Downs had, as a natural extension of

templates, but there was nothing in is experience upon which he could base an implementation

other than the discussions he had followed in the forums. Following his “try it and see” philosophy,

he decided to take a shot in the dark. On May 16, 2004, he made the following announcement in a

new post titled “mixins” [na Bright 2004d]:

I have this mostly implemented. It’s been based on a lot of your suggestions. The way

I did it is, I think, pretty unexplored territory. That means there may be some pretty

cool uses for it I’ve never thought of. Let me know what you think, and if I missed the

boat completely <g>.

Semantically, template mixins [na Digital Mars 2012b] were intended to allow some of the

functionality expressed in Tim Sweeney’s first use case (“like MFC’s techniques”) while avoiding the

weaknesses of the C preprocessor. When the mixin keyword is prefixed to a template instantiation,

the body of the template is “inserted” into that location. During a normal template instantiation,

the template body takes on the scope in which it is implemented. When the mixin keyword is

applied to a template instantiation, this behavior is turned upside down and the template body

takes on the scope in which it is instantiated. In other words, if a template needs access to any

private symbols in the module in which it is declared, attempting to mix it in to another module

will cause compiler errors.

As a basic example, consider a C library that makes use of simulated struct inheritance. When

creating a D binding to the library, template mixins can be employed to good effect in the struct
declarations.

// This template is mixed in at the top of struct declarations so that they

// all begin with the same three members.

template EventCommon() {

EventType type;

uint timestamp;

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 73. Publication date: June 2020.



Origins of the D Programming Language 73:23

WindowHandle window;

}

struct KeyboardEvent {

mixin EventCommon;

uint keyCode;

...

}

struct MouseMoveEvent {

mixin EventCommon;

int deltaX, deltaY;

...

}

The body of a mixin template isn’t just blindly pasted into the scope into which it’s mixed. It

comes wrapped in its own scope with its internal symbols aliased to the external scope. Without

this precaution, a mixin could not be used multiple times in the same module or in conjunction with

other mixins containing identical symbol names, or without potentially conflicting with existing

symbols in the same scope. With this precaution, both are possible when the mixin instantiation is

accompanied by an identifier to disambiguate conflicting symbols.

template addVars(T) {

T x;

T y;

T z;

}

mixin addVars!float v1;

mixin addVars!double v2;

void main() {

v1.x = 10; v2.x = 20;

}

Typically, templates are written with the intention that they either be instantiated normally or

that they be mixed in, but rarely both. Attempting to use a template in a way it is not intended will

often cause compiler errors (frequently due to scoping issues) that are hard to decipher. To remedy

this, D2 allows the mixin keyword to be prefixed to the declaration of any template intended to be

mixed in. The compiler will then generate an informative error message if a normal instantiation is

attempted. Even though normal templates may still be erroneously mixed in, the rarity of related

bug reports and help requests from confused users suggests it is not a problem in practice.

5.2 The Sudden Implementation of static if
On May 4, 2005, Bill Baxter made a post to the newsgroup on the topic of improving support

for metaprogramming in D [na Baxter 2005]. He opened by discussing the limitations of C++

templates for metaprogramming. As an example, he linked to an article demonstrating the use
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of templates to implement portable parameterized integers in C++ [Pescio 1997]. The technique

required an implementation that, in Bill’s words, “is just an if-else, but dressed up in C++ template

metaprogramming it takes about a page of code.” In pondering first-class language support for full

metaprogramming capabilities, he posited the following imaginary example:

metafun type integer(int numbits) {

if (numbits<=sizeof(char)) return char;

if (numbits<=sizeof(short)) return short;

if (numbits<=sizeof(int)) return int;

if (numbits<=sizeof(long)) return long;

if (numbits<=sizeof(cent)) return cent;

metathrow "Compiler error";

}

Four days later, Walter replied with the following [na Bright 2005c]:

I agree with you on all points - especially on the one that if metaprogramming was

easier to do, it would be a lot more practical. I’d like to bring this to D.

And five days after that, he said in a new post, “You’ve inspired me” [na Bright 2005d]. The

remark was accompanied by the following snippet of code:

template Integer(int nbits) {

static if (nbits <= 8)

alias byte Integer;

else static if (nbits <= 16)

alias short Integer;

else static if (nbits <= 32)

alias int Integer;

else static if (nbits <= 64)

alias long Integer;

else

static assert(0);

}

int main() {

Integer!(8) i;

Integer!(16) j;

Integer!(29) k;

Integer!(64) l;

printf("%d %d %d %d\n", i.sizeof, j.sizeof, k.sizeof, l.sizeof);

return 0;

}

And just like that, static if became a feature of D. It was released in DMD 0.124 only six days

after its demonstration in the newsgroup [na Digital Mars 2005a].

Similar to version, the else branch is optional and the braces ‘{’ and ‘}’ do not introduce a

new scope. Also in keeping with version, static if may occur at declaration level (including top
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module level) so its use is not limited to function bodies. Unlike version, the evaluated expression

can be an arbitrary Boolean expression computable during compilation.

The charter of static if is code generation driven by introspection. Typically, generic code

queries the parameterized types received and makes decisions depending on their capabilities.

Consider, for a simple example, a buffer abstraction that is backed by either statically- or dynamically-

allocated memory, depending on the constant size chosen (if zero, dynamic allocation is to be used).

The allocation choice leads to radically different data layouts; therefore, a typical implementation

would implement the two choices in separation (in a language like C the data structures and APIs

would be entirely different; in C++, template specialization might be used). It is worth noting that

the vast majority of the code is identical across the two layouts. The typical implementation in D

unifies the two definitions, as shown below.

struct Buffer(T, size_t max = 0) {

// Layout {

static if (max != 0) private T[max] data;

else private T[] data;

private size_t used;

// }

// Interface

static if (max == 0) {

// This API is for dynamic allocation only

void reserve(size_t capacity) { ... }

...

}

// This API is common to both

size_t capacity() {

static if (max != 0) { ... }

else { ... }

}

size_t used() { ... }

...

}

The definition of Buffer above demonstrates how the programmer is able to manually, and

precisely, arrange code related to data layout, interface, and implementation, and cater to various

distinctions derived from the allocation decision, by means of simple static if decisions that are

instantly self-explanatory to the casual reader. The resulting code is unusually compact in relation to

its generality. This is because merging multiple design decisions together eliminates several subtle

forms of duplication that cannot be addressed via conventional coding techniques. Conversely, the

density of static if declarations indicates the number of possible distinct binary programs that

can be generated from the same codebase, much as the density of regular if statements indicates

the number of possible execution paths.

The expressions being tested in the example above have been kept very simple to facilitate

exposition. Generally, tests may involve much more detailed introspection queries for elaborate

types, as in the design of the memory allocation framework in D2 [na dlang.org 2015a]. The

key insight Walter had when implementing this feature, that meta programming should not be a
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separate language but should just be regular D code, would later provide the impetus to expand the

power and scope of D’s compile-time programming features.

5.3 Documentation Generation
D’s documentation (language, standard library reference, and website) was originally written

manually, without special tooling. The documentation of the runtime library was implemented

in files separate from the code, sometimes by different people. In short order, the resulting state

of affairs fulfilled the adage that separate documentation is always incomplete, wrong, or miss-

ing entirely. Thus arose the motivation for Ddoc, a documentation generation framework akin

to Javadoc [Kramer 1999], which drastically improved the matter by integrating documentation

into the D source code itself. Ddoc was added in September 2005 [na Bright 2005b] and is currently

used for building the entire language site dlang.org, which includes the language reference and the

standard library reference.

Third-party documentation tools, such as Doxygen for C++ [na Van Heesch 1997], were just

becoming popular at the time. Yet building documentation support in the compiler’s front end

had certain advantages. First, a built-in documentation generator would side-step all matters of

platform availability, tool installation, version matching, or subtle parsing differences; and second,

the built-in documentation generator has access to rich and consistent semantic information

from the compiler. A simple default choice of documentation generator inculcated a culture of

expecting Ddoc documentation to be present early on with any coding artifact, rather than as

a distinct endeavor and responsibility. Even though Ddoc lacked the sophistication of dedicated

documentation tools, it has been a strong trendsetter; subsequent documentation generators [na

DWiki 2018] have been built on top of it in a compatible manner, the most popular being Rejected

Software’s DDOX [na Rejected Software 2012c], and Adam D. Ruppe’s adrdox [na Ruppe GitHub

repository]. It has also been put to use beyond its original purpose of documentation. As one

example, Ali Çehreli used Ddoc to write his book, “Programming in D.”

Documentation unit tests would be introduced in D2 in 2013, allowing the insertion of the source

code from unittest blocks in the generated documentation. Currently, virtually all examples in

the standard library documentation at dlang.org/library are executable unit tests.

5.4 DSource
In March, 2004, in response to an increasing number of open-source D projects being announced

in the newsgroups, Brad Anderson made it known that he and J.C. Calvareese had been working

on a new website geared toward such projects [na Anderson 2004]. DSource provided Subversion

source control hosting, project management software, and a dedicated discussion forum for each

topic, all free of charge. Server space was donated by Brad Anderson’s employer. The site became

the center of open-source D ecosystem activity for several years. Though Walter never moved

DMD to DSource, he did eventually move the project to GitHub. The use of DSource subsequently

began to decline. In 2014, Vladimir Panteleev took over management of the domain. He made the

site available in read-only mode [na Panteleev 2014], preserving a period of D’s history involving

over 200 projects [na Dsource.org 2004].

A major project that emerged from DSource was DWT [na DSource.org 2004a], an ambitious

effort to port the Eclipse Foundation’s Standard Widget Toolkit (SWT) [na The Eclipse Foundation

2003] from Java to D. At the time, there were no practical options for GUI development in D. Other

initiatives followed shortly thereafter, such as Mike Wey’s D bindings for Gtk [na The GTK Team

1997], called GtkD [na Wey 2004], and Christopher Miller’s D Forms Library (DFL) [na Miller

2004], a Windows-specific GUI library that included a WYSIWYG editor known as Entice Designer.

Neither of these projects caught Walter’s attention in the way that DWT did. He was so enthusiastic
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about DWT that he added Java-style inner classes as a new language feature to facilitate porting

the Java code base to D. In February, 2006, he declared DWT the official D GUI project and opened

the digitalmars.D.dwt newsgroup [na Bright 2006b].

5.5 A Serendipitous Encounter
Walter and Andrei Alexandrescu first crossed paths at the SD West [na SD West] conference.

The following month, after a discussion with Eric Niebler comparing D templates with those of

C++, Andrei emailed Walter his thoughts on the subject (all of which would ultimately influence

the implementation of D’s templates). The opening line gives an indication of the nature of his

thoughts:

I’m going to be ruthless. Put your bulletproof vest on.

At a subsequent Northwest C++ User Group event, though neither man can recall which one,

they entered into a discussion on language design and Andrei’s intent to apply his ideas in a

language he called Weasel. Likely candidates are the October 18, 2004 gathering where Walter

spoke about D [na Bright 2004a] and the January 12, 2005 event at which Andrei gave a presentation

on lock-free programming [na Alexandrescu 2005]. Whatever the date, their conversation that

evening eventually led them to arrange to meet for more in-depth discussion, making it one of the

most influential events in the history of the D language.

On March 20, 2005, at a restaurant in the University of Washington district, Andrei showed

Walter his plans for Weasel. One of the features in which he was interested was User-Defined

Syntax (UDS). Walter disliked the idea on the grounds that it was too similar to macros, a concept to

which he was antipathetic, and he tried to talk Andrei into abandoning it. There were other features,

such as scope guards [na Alexandrescu and Marginean 2000], that he felt would be worthwhile

incorporating into D. The back and forth between them left the door open for more meetings and

even further discussion. Both mark this meeting as the beginning of their collaboration.

Andrei insists he did little in the way of contribution throughout 2005. In 2006, their meetings

became both larger and more consequential. They were joined by Brad Roberts, Bartosz Milewski,

and Eric Niebler in discussions that focused on the features that D lacked which a modern pro-

gramming language ought to have: an intuitive concurrency model, memory safety, and more.

According to Andrei, this group of people “for better or worse influenced the definition of D”, as

the ideas that materialized in their meetings would become the foundation of D2.

6 STAKES IN THE GROUND (2007)
By 2007, some of the core cadre of early adopters were still around, but they had been joined

by a more varied and eclectic mix of programmers. Some of them weren’t happy that the D

“forums” weren’t the sort of feature-rich forums [na Bobef 2005] they had grown accustomed to.

In comparison to the modern forums at DSource, the official D NNTP-based forums were ancient

technology.

At some point, Walter had installed an open-source web interface to make newsgroup access

more palatable, but it was an old Perl CGI program with an equally ancient interface that never

caught on. He had gotten complaints about it over the years, so in December of 2006, he upgraded to

a new web interface [na Bright 2006c]. It was only a marginal improvement. In 2007, Brad Roberts

created a mailing list interface for each active D newsgroup [na Digital Mars 2007b]. Several users

gravitated to the mailing lists, but that didn’t satisfy everyone.

A number of IRC channels for D had been created by community members in the early years,

but the one that stuck was the #D channel at freenode.net. Established in January 2003, its usage

had slowly grown along with that of the D newsgroup. By February 2006, the channel had an
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average concurrent user base of 20 with a peak of 30 [na Miller 2006]. Not only was #D a place

where beginners could find help, it was a place where users could vent their frustrations outside

of the official newsgroups. In effect, the IRC channel became a sort of in-the-open underground

network. With most of the regular newsgroup users rarely, if ever, visiting, some ideas that would

have faced opposition in the newsgroup found fertile ground in the IRC channel.

6.1 Tango
In 2006, among the topics of discussion in IRC were complaints about the state of Phobos and the

unannounced work of a team of three developers. Two of the three were the maintainers of two open

source projects at DSource: Mango, a collection of packages aimed at network programming and

servlet development [naDSource.org 2004b], and Ares, which was intended as a full replacement for

Phobos, the D standard runtime library [na DSource.org 2004]. Together with another like-minded

D user, they began work on a library that combined aspects of Mango with Ares in a broader set of

packages that they would announce to the world as Tango.

The initial announcement of Tango on December 31, 2006 [na Kelly 2006] was a stake planted in

the ground by the Tango team and their supporters a point around which those who were unhappy

with the state of Phobos could rally. And rally they did. With the first release on January 31, 2007,

Tango began its steady accumulation of users and contributors [na Igesund 2007].

In late August, as the D Language Conference was winding down, the D community was waiting

for news, as demonstrated by newsgroup user BLS [na BLS 2007]:

Seems that nobody has the heart to ask . So I will : Any clarification regarding having

2 standard libraries ?

By all accounts, the meeting between Walter and the Tango team was cordial. Given Walter’s

desire to maintain Phobos in its current form, the place to look for a compromise was in bridging

the differences between the two libraries. According to Walter [na Bright 2007c]:

Myself and the Tango team both agree that the current situation is not good, and to fix

it we need to remove the incompatibilities between the two, and we intend to do so.

Sean Kelly, a Tango developer and the former maintainer of Ares, concurred [na Kelly 2007]:

I think we all agreed that the current situation isn’t ideal and that we’d like to rectify

it. However, there are some technical and workflow issues to address, at the very least.

The reaction to the news was mostly positive, but those hoping to hear of a merger were

disappointed.

Walter felt that a wrapper API like Tangobos [na Richards 2007] was a suboptimal solution.

The approach they settled on was to separate the language runtime from the standard library. By

sharing a common runtime, both libraries could exist side-by-side in the same program. Sean had

begun his Ares project from the same code at the core of Phobos. He had enhanced it with new

features, such as multithreading support, but had changed the original code very little. He took on

the job of working out the issues and establishing a common code base. Coming as it did during the

early development work on D2, the new DRuntime would become the common language runtime

for that version of the language.

Tango had become so firmly established by the time of the conference that the Tango team

were invited by Apress to author a book about D and Tango. The book was part of the publisher’s

“FirstPress” series, which they printed in order to gauge interest in various programming topics

and the potential for future publications. Michael Parker had been writing about D at “The One

With D” since early 2006 [na Parker 2006]. The Tango team invited him to join them on the book

project. Together, the four spent the autumn of 2007 writing and revising. “Learn to Tango with

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 73. Publication date: June 2020.



Origins of the D Programming Language 73:29

D,” was published in February of 2008 [Bell et al. 2008], though it was too late to claim the honor

of being the first published book about D. It was preceded the previous November by a German

book titled “Programmieren in D” by Tobias Wasserman and Christian Speer[Wasserman and Speer

2007]. The Tango book was later used in a D course by the Faculty of Mathematics and Computer

Science at Nicolaus Copernicus University in Torun, Poland, who also hosted the first and only

Tango Conference in late September, 2008 [na Tango Wiki 2008].

6.2 The Penultimate Version
At the end of 2003, some users were already eager to see a 1.0 release of DMD [na T. 2003]. Walter,

ever the optimist, said that he “think[s] it’s pretty close” [na Bright 2004b]. IRC users idly wondered

if a 1.0 release would ever come and posts in the newsgroups reared up from time to time. Two

days after the announcement of Tango, on January 2, 2007, their wish finally came true.

DMD 1.00 was arguably an underwhelming release. The change log lists 38 bug fixes, an enhance-

ment to the -v compiler flag, and a newmodule that provides D bindings to the libpthreadAPI [na
Digital Mars 2007c]. Aside from the whole number in the version, there was nothing to distinguish

it from the 179 compiler releases that had come before. It appeared as if Walter was shoving his

own stake in the ground at a random point and declaring that henceforth, DMD would be known

as 1.0.

There was method to his madness. The language design discussions he had been having with

Andrei and the others had been fruitful, but implementing the ideas they had been exploring would

bring about breaking changes. The declaration of the 1.0 release allowed Walter to designate a

“stable” version of the language, freeing him up to implement potentially disruptive features in a

new 2.0 version.

Few in the community knew anything of those plans. They were happy just to see that “1” in

the version number. The announcement of the release in the newsgroups [na Bright 2007a] was

met with 63 cheerfully congratulatory posts. It wasn’t simply a major milestone, it symbolized

the achievement of years of effort by Walter and the community members who had contributed

in big ways and small along the way. It also represented stability and, to some degree, it was a

confirmation that D had finally arrived.

7 TO INFINITY AND BEYOND
Any tale of the origins of the D programming language must reasonably end with the release of

version 1.00. The development of D2 is another tale, but it would be a disservice to the reader not

to provide a glimpse of what came next.

7.1 From D1 to D2
Subsequent releases of the DMD 1.xxx series would see comparatively few new features, so in the

end stability did prove to be a reality. Two early releases in the series would introduce new features

that would transform how D programmers write code. DMD 1.005 brought import expressions to
the language, allowing the contents of any file in the source tree, e.g., import("font.bmp"). The
same release included mixin expressions. Also known as string mixins, this feature allows mixing

code directly into any scope without the precaution of preventing against symbol clashes. This

would prove to be a powerful feature that, when coupled with Compile-Time Function Evaluation

introduced in the subsequent release, would open the door to generative programming in D.

D1 was considered stable enough that Sociomantic Labs (now Dunhumby), based in Berlin,

adopted D and DMD for their real-time ad bidding platform. Funkwerk, a German company based

in Munich, began experimenting with D in 2008 and ultimately used it to replace the Java-based

components of their passenger information system [na Parker 2017]. Over time, other companies
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would build their businesses around D or use it to implement tooling [na D Language Foundation

2020b].

Andrei Alexandrescu’s involvement gradually increased after the 2007 conference. The ideas

that he and Walter had discussed in their meetings with Brad Roberts, Bartosz Milewski, and Eric

Niebler would start to take shape in the DMD 2.0x series of compilers, the first of which was

released on June 17, 2007 [na Digital Mars 2007a]. This release was the first that would bring

incremental changes over the existing language.

Ultimately, D2 would effectively become a different language; it wasn’t long before D2 code

became incompatible with D1 code. Major new features that contributed to the divergence include:

Ranges. Ranges were a transformative feature that brought the functional programming paradigm

to D [na Alexandrescu 2009]. A comprehensive set of algorithms in the standard library enabled

the construction of lazy, functional pipelines [na Bright 2012; Teoh 2013] that opened D to a new

audience.

CTFE. Compile-Time Function Evaluation expanded the primitive compile-time capabilities of

D1 by introducing a compile-time interpreter that supports a large subset of the D language. This

allows any D function which meets a small set of criteria to be evaluated at compile time to compute

compile-time values, such as constant initializers. When coupled with another D2 feature, string

mixins, CTFE brings the power of code generation to the D programmer.

Compile-Time Introspection. The introduction of compile-time function evaluation provided

motivation for introspection features. The two features work in tandem: better introspection of

code begets more interesting applications of compile-time evaluation, which in turn computes

more interesting introspection artifacts. The feature was backported to D1, but was less useful

there without D2’s other powerful compile-time features.

Transitive Immutability. D2 added the immutable qualifier, which expresses transitive immutabil-

ity of data, and changed the existing contract of const, which denotes an unmodifiable view of

data that may be mutable or not [na D Language Foundation dlang.org]. The transitivity of const
is a feature to which programmers accustomed to C++ often have difficulty adjusting. Transi-

tive immutability paved the way for the support of functional purity and stronger support for

multi-threaded programming in the runtime library.

Attributes. Attributes (also known as annotations) are language- or user-defined tags attached

to declarations. D2 provides a handful of built-in function attributes that prohibit the use of GC-

dependent or memory unsafe features inside a function body or enforce functional purity. User-

Defined Attributes can be used with D’s compile-time features for code generation and conditional

compilation.

Thread-Local Storage. Variables in D are thread-local by default. The shared attribute (and its

brute-force cousin __gshared) can be applied to change this behavior and make a variable available

to all threads. While TLS variables have proven to be a boon, shared has never been implemented

to its full potential. Work began in June, 2019, toward shoring up the specification of the feature.

7.2 The Community
Though Walter had created the 2.x series of DMD out of concern for the potential disruption of

breaking changes, the actual source of contention turned out to be the very nature of the new

features. Some of them required D programmers to undergo a paradigm shift in order to use

them. For example, certain Phobos modules required familiarity with the functional programming
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paradigm in order to use ranges effectively, and the transitive nature of the new immutable and
const required much more forethought than D1’s C++-style const to employ effectively.

Given the reluctance of the Tango developers to port their library to D2, it became the de facto

standard library for those who continued to use D1. Library authors now had to choose not only

which standard library to support, but also which language version. For several years, even after

active development on Tango came to a halt, comments about D’s “two standard libraries” inevitably

appeared in any social media discussion about D, most often as a reason to avoid the language. As

usage of D2 began to grow and that of D1 to dwindle, Tango usage also decreased.

There was no single person or team with whomWalter could hold a meeting to heal the rift over

the new language features. It required time and the help of members of the community who made

themselves available to answer questions on social media [na Davis 2010]. By 2012, the original

developers were no longer active [na Igesund 2012]. Sociomantic maintained and evolved their

own fork of Tango, which they ultimately released as an open source library called Ocean [na

Ocean 2017]. A handful of D community members forked Tango and completed the port to D2 and

the common runtime [na Tango-D2 2012].

Andrei published the book “The D Programming Language” (TDPL) in 2010 [Alexandrescu 2010].

At that point, D2 was not yet feature complete. The book was intended to serve both as a guide

to the completed features and a roadmap to those that were yet to be implemented. Four more D

books would hit the market in subsequent years, but TDPL would be considered the D bible for

years after its publication.

In 2011, Vladimir Panteleev created DFeed [na Panteleev 2012], a web forum interface to the

existing NNTP server, in the D language (DFeed would receive accolades for its speed [na Hacker

News 2015]). This made the newsgroups more accessible to a wider audience, presenting a more

user-friendly and somewhat familiar, if minimal, forum interface.

In 2013, another D programming language conference was held, this time at the headquarters of

Facebook in Menlo Park, CA, (where Andrei was working as a researcher) and branded as DConf.

Money for the event was raised via a Kickstarter campaign [na Bright 2013b]. The conference drew

approximately 50 attendees from around the world and was considered a success [na Bright 2013a].

A repeat event was held in the same location the following year and, with the third edition hosted

by Utah Valley University, became an annual event in 2015. In 2016, DConf moved to Europe, where

it has remained every year up to the time of this writing [na DConf 2013].

The D Language Foundation was founded in October of 2015 with the intention of raising money

for the development and maintenance of the D language, organizing the annual DConf, sponsoring

scholarships at universities around the world, responding to the needs of organizations using D,

and generally promoting the language. Walter, Andrei, and Ali Çehreli were the Foundation’s

founding officers [na dlang.org 2015b].

As the decade beginning in 2011 continued, the focus in D2’s development shifted from becoming

feature-complete to becoming stable and improving quality of implementation. D1 was deprecated

and development discontinued in 2012, though Walter continued to provide support for companies

still using it until they could make the transition to D2. Other companies newly adopting D in part

or in whole put the second version of the language through its paces [na D Language Foundation

2020b]. With the D Language Foundation in place, public relations became more of a focus. This

included the launch of an official D blog and several social media accounts [na dlang.org 2017].

Over the years, a collection of semi-formal D Improvment Proposals (DIP) had accumulated at

the D Wiki. In June of 2016, Mihails Strasuns established a formal process and took on the role of

DIP Manager [na Parker 2016]. Michael Parker took over in April of 2017. Once the DIP process

was in place, the days of Walter changing the language at will officially came to an end. Feature
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proposals are subjected to at least three rounds of community review before a rigorous evaluation

by the language maintainers.

Until May 2019, the term “language maintainers” referred to Walter and Andrei. At DConf 2019,

Andrei formally stepped down from his role as a decision maker in the development of the D

programming language. He continues as an officer of the D Language Foundation, as a contributor,

and as an active participant in the community. He was succeeded by Átila Neves, a long-time D

user and contributor.

D, as a language and as a community, sprang to life from the ideas of a solitary programmer,

shaped by the knowledge and experience he had gained over two decades. In the first few years

of its existence, D grew and evolved both as a language and as a community to a point where it

was ready to be adopted commercially. It survived a massive rift in the user base and the transition

from one major version to another.

No one knows with certainty what D’s future may hold, but there are those who say it looks

rather bright indeed.
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